CptS 360 (System Programming)
Unit 15: Interprocess Communication

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Motivation

> Processes need to talk to each other.

> Two processes on the same system can communicate more
efficiently than two processes on separate systems.

» Daemons and some servers depend on IPC.

References

» Stevens & Rago Ch. 15

> man pages

» Rochkind, “Advanced Unix Programming” (classic)
> Stones & Matthew “Beginning Linux Programming”

Overview

» IPC is how processes talk to each other intra-system.

» This is mostly old stuff that's been in UNIX for many years.
P [t's still heavily used.

» Linux has both BSD and System V facilities.

>
>
>

>

In UNIX from day 1.

Originally driven by limited (16 bit) address space.

pipe(2)
P creates a pair of pipes
» £d[0] opened for reading
» fd[1] opened for writing.

Don't confuse with dup(2).
Half-duplex. (One way.)
Only works between processes with a common ancestor.

Pipes classed as FIFOs for purposes of fstat(2).

(see demos/dn _pipe_call and demos/dn pipe_comm)

man:pipe(2)
man:dup(2)
man:fstat(2)

Pipes and Forking

P> Pipes are pretty useless within a single process.
» But during a fork():

» Child inherits parent’s open £d's, including pipe () 'd ones.
» Each process closes one £d[] element.
» Can use this to redirect stdin or stdout to another program.

P a prepackaged way to do this is...

» unidirectional

» 1st argument passed to /bin/sh

P so it can even be a shell command, like
"cd /home/bobl; find ."

P note use of shell syntax

(see demos/dn popen_pager)

man:popen(3)
man:pclose(3)

Parent/Child Synchronization

» A process reading from a pipe will block until the process at
the other end writes something.

P> A process writing to a pipe will block until the process at the
other end reads it.

» We can use this to sychronize parent and child processes.
(see demos/dn tell wait)

Coprocesses

» Pipe unidirectionality seems limiting: Can we do better?

» Coprocesses: two or more processes passing data back and
forth between them.
> Two implementations:
> If pipe's are bidirectional (full duplex),
use a single bidirectional pipe
> |f pipe's are unidirectional (half duplex),
use two unidirectional pipes (This is the Linux case.)

otherwise known as “named pipes”

mkfifo(3)
There's also a shell command:

$ mkfifo myfifo
$ echo "hello, fifo" >myfifo

(in another window, but same directory)

>
» unidirectional
>
>

$ cat <myfifo
$ rm myfifo
Then use standard or low-level |/O as usual.

» can be used to duplicate streams

man:mkfifo(3)

FIFOs Il

» Also works for client-server if name of server's FIFO is
advertised (“well-known™).

» Sending stuff back to the client is difficult unless the client
sends its PID or some other identifier. Then server can open
client-specific FIFO.

» To prevent a server getting EOF every time the number of
clients drops to 0, server may open well-known FIFO
read /write, even though it never writes anything there.

» May be used with select(2).

» Problems:

» Hard for server to tell when client goes away.
» Messages that are too big may be broken up, leading to
interspersed requests.

(run demos/dn fifo)

man:select(2)

XSI IPC

» XSI: X/Open System Interface
» Nothing to do with X11.

» Derived from System V IPC.
» Goal was to produce more flexible IPC than pipes and FIFOs.

» Three paradigms:

» sending messages
» sharing memory
» semaphores

IPC Keys

» |IPC based on “identifiers”

P arbitrary integers “handles” created by the kernel
» kind of like system-wide file descriptors
» but you need to start with a "key” first.

» key (key_t, usually a long int) is passed to msgget(),
shmget(), or semget(), all of which return an identifier.

» A key of IPC_PRIVATE returns a private identifier for a new
mechanism.

» but this must somehow be communicated among all
participants, so ...

man:msgget()
man:shmget()
man:semget()

Where Does the Key Come From?

> A predetermined key can be stored in a shared header or
mutually agreed-upon file but the key could already be
assigned, so the *get() calls will fail.

» Alternative: ftok(3)
» pathname/project ID — ftok()

» All programs that agree on a given path name and a project
ID will return the same key.

» Only the lower 8 bits of the project ID count.

man:*get()
man:ftok(3)

Mapping the Key to an IPC ldentifier

> As mentioned above, an identifier is like a persistent file
descriptor that is meaningful to the whole system.

» IPC_CREAT bit needed to create the identifier in a *get()
function

» but should only be called by one participant
> the server, maybe?

man:*get()

Permission Structure

> passed to the *get() functions

» look like the usual 9-bit file permission bitmask, except

» that they don't describe files
> the search/execute bit is not currently used by Linux

man:*get()

Configuration Limits

> Be aware of these.
> Set by kernel configuration.
» On Linux:

$ ipcs -1

To XSI IPC or Not to XSI IPC?

Advantages:

> reliable

» flow controlled

» record oriented

» can be processed in nonsequential order
Disadvantages:

» No reference counting — messages remain in system until read
or deleted.

» |PC structures don't exist in filesystem.

» Much functionality already in the filesystem had to be
duplicated.

> Identifiers aren’t exactly file descriptors, so there's no
multiplexed 1/0.

Message Queues |

» record oriented
> Messages have
> a “message type’ (msgbuf.mtype)
> a length (n)
P a series of n bytes.
» msgget(2)
P to establish or connect to a message queue
» msgsnd(2)
P to send a message
> note return: ssize_t (signed size) vs. size t

man:msgget(2)
man:msgsnd(2)

Message Queues ||

» msgrcv(2)
P to receive a message
> the ("typ") argument lets us screen messages:
> typ ==
first message on queue
> typ > 0
first message of message type typ
> typ < 0
first message with message type < |typ|
» msgctl(2)
» does miscellaneous operations on message queues
> deleting them
> setting them for nonblocking 1/0

» kind of like joct/(2) on devices or fcntl(2) on files.

man:msgrcv(2)
man:msgctl(2)
man:ioctl(2)
man:fcntl(2)

Message Queues Examples

P unidirectional message passing:
(run demos/dn _ipc_chat)

» bidirectional message passing:
(run demos/dn _ipc_oracle)

Message Queues Reconsidered

» According to Stevens & Rago, message queues for “normal”
messages don't offer much advantages over local AF_UNIX
(next unit) sockets.

» They're still in use, though.
» Don't use them for new stuff.

Semaphores |

> slightly more flexible than a mutex

v

(originally: visual signalling device)

» Simple ones start at one and become zero when resource is in
use. (i.e. they're mutexes)

» XSI IPC semaphores

P start at a positive integer

» resource is locked when the count reaches zero

» somewhat more useful than mutexes, this allows you to restrict
the number of users of a resource to something other than one

» semget(2)
gets one (or more) semaphores

» semctl(2)
does miscellaneous operations (such as deleting semaphores)

man:semget(2)
man:semctl(2)

Semaphores Il

» semop(2)

> (look at struct sembuf)
» the “thermometer”:
> semop > 0

releasing resources by the process
> sem.op < 0

obtaining resources by the process

» S & R on record locking vs. semaphores:
Record locking is slower, but easier.

man:semop(2)

Shared Memory

Maps the same area of memory into two or more processes.

| 2

>
>

>
>

shmget(2)
shmctl(2)
shmat(2)

P attaches shared memory to address space
» virtual addresses may differ in two clients

shmdt(2)
detaches (like an unlink) shared memory from address space

Access to shared memory is often controlled by semaphores.

Where does shared memory fit into a virtual address space?

(run demos/dn _shm)

man:shmget(2)
man:shmctl(2)
man:shmat(2)
man:shmdt(2)

Client-Server Properties

» fork-exec
» client forks and execs server

» bidirectional pipes can be used
> server can be SetUID, looking at clients real UID (which it
inherits) to verify permission beyond filesystem

» server can only send data, not — for instance — a file
descriptor, back to a parent

Communication with Daemons

>
>
>
[
>

can't use pipes for this

FIFOs possible, but message queues better.

single queue per daemon

multiple queues, one per client (but no select() call available.)

can use memory segments with semaphores as an alternative
to message queues

man:select()

	Unit 15: Interprocess Communication

