
Unit 15: Interprocess Communication

CptS 360 (System Programming)
Unit 15: Interprocess Communication

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Motivation

I Processes need to talk to each other.

I Two processes on the same system can communicate more
efficiently than two processes on separate systems.

I Daemons and some servers depend on IPC.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

References

I Stevens & Rago Ch. 15

I man pages

I Rochkind, “Advanced Unix Programming” (classic)

I Stones & Matthew “Beginning Linux Programming”

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Overview

I IPC is how processes talk to each other intra-system.

I This is mostly old stuff that’s been in UNIX for many years.

I It’s still heavily used.

I Linux has both BSD and System V facilities.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Pipes

I In UNIX from day 1.

I Originally driven by limited (16 bit) address space.
I pipe(2)

I creates a pair of pipes
I fd[0] opened for reading
I fd[1] opened for writing.

I Don’t confuse with dup(2).

I Half-duplex. (One way.)

I Only works between processes with a common ancestor.

I Pipes classed as FIFOs for purposes of fstat(2).

(see demos/dn pipe call and demos/dn pipe comm)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pipe(2)
man:dup(2)
man:fstat(2)

Unit 15: Interprocess Communication

Pipes and Forking

I Pipes are pretty useless within a single process.
I But during a fork():

I Child inherits parent’s open fd’s, including pipe()’d ones.
I Each process closes one fd[] element.
I Can use this to redirect stdin or stdout to another program.

I a prepackaged way to do this is...

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

popen(3) and pclose(3)

I unidirectional
I 1st argument passed to /bin/sh

I so it can even be a shell command, like
"cd /home/bobl; find ."

I note use of shell syntax

(see demos/dn popen pager)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:popen(3)
man:pclose(3)

Unit 15: Interprocess Communication

Parent/Child Synchronization

I A process reading from a pipe will block until the process at
the other end writes something.

I A process writing to a pipe will block until the process at the
other end reads it.

I We can use this to sychronize parent and child processes.

(see demos/dn tell wait)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Coprocesses

I Pipe unidirectionality seems limiting: Can we do better?

I Coprocesses: two or more processes passing data back and
forth between them.

I Two implementations:
I If pipe’s are bidirectional (full duplex),

use a single bidirectional pipe
I If pipe’s are unidirectional (half duplex),

use two unidirectional pipes (This is the Linux case.)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

FIFOs I

I otherwise known as “named pipes”

I unidirectional

I mkfifo(3)

I There’s also a shell command:

$ mkfifo myfifo

$ echo "hello, fifo" >myfifo

(in another window, but same directory)

$ cat <myfifo

$ rm myfifo

Then use standard or low-level I/O as usual.

I can be used to duplicate streams

Bob Lewis WSU CptS 360 (Spring, 2022)

man:mkfifo(3)

Unit 15: Interprocess Communication

FIFOs II

I Also works for client-server if name of server’s FIFO is
advertised (“well-known”).

I Sending stuff back to the client is difficult unless the client
sends its PID or some other identifier. Then server can open
client-specific FIFO.

I To prevent a server getting EOF every time the number of
clients drops to 0, server may open well-known FIFO
read/write, even though it never writes anything there.

I May be used with select(2).
I Problems:

I Hard for server to tell when client goes away.
I Messages that are too big may be broken up, leading to

interspersed requests.

(run demos/dn fifo)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:select(2)

Unit 15: Interprocess Communication

XSI IPC

I XSI: X/Open System Interface
I Nothing to do with X11.

I Derived from System V IPC.

I Goal was to produce more flexible IPC than pipes and FIFOs.
I Three paradigms:

I sending messages
I sharing memory
I semaphores

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

IPC Keys

I IPC based on “identifiers”
I arbitrary integers “handles” created by the kernel
I kind of like system-wide file descriptors
I but you need to start with a “key” first.

I key (key t, usually a long int) is passed to msgget(),
shmget(), or semget(), all of which return an identifier.
I A key of IPC PRIVATE returns a private identifier for a new

mechanism.

I but this must somehow be communicated among all
participants, so ...

Bob Lewis WSU CptS 360 (Spring, 2022)

man:msgget()
man:shmget()
man:semget()

Unit 15: Interprocess Communication

Where Does the Key Come From?

I A predetermined key can be stored in a shared header or
mutually agreed-upon file but the key could already be
assigned, so the *get() calls will fail.

I Alternative: ftok(3)

I pathname/project ID → ftok()

I All programs that agree on a given path name and a project
ID will return the same key.
I Only the lower 8 bits of the project ID count.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:*get()
man:ftok(3)

Unit 15: Interprocess Communication

Mapping the Key to an IPC Identifier

I As mentioned above, an identifier is like a persistent file
descriptor that is meaningful to the whole system.

I IPC CREAT bit needed to create the identifier in a *get()
function
I but should only be called by one participant
I the server, maybe?

Bob Lewis WSU CptS 360 (Spring, 2022)

man:*get()

Unit 15: Interprocess Communication

Permission Structure

I passed to the *get() functions
I look like the usual 9-bit file permission bitmask, except

I that they don’t describe files
I the search/execute bit is not currently used by Linux

Bob Lewis WSU CptS 360 (Spring, 2022)

man:*get()

Unit 15: Interprocess Communication

Configuration Limits

I Be aware of these.

I Set by kernel configuration.

I On Linux:

$ ipcs -l

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

To XSI IPC or Not to XSI IPC?

Advantages:

I reliable

I flow controlled

I record oriented

I can be processed in nonsequential order

Disadvantages:

I No reference counting – messages remain in system until read
or deleted.

I IPC structures don’t exist in filesystem.

I Much functionality already in the filesystem had to be
duplicated.

I Identifiers aren’t exactly file descriptors, so there’s no
multiplexed I/O.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Message Queues I

I record oriented
I Messages have

I a “message type” (msgbuf.mtype)
I a length (n)
I a series of n bytes.

I msgget(2)
I to establish or connect to a message queue

I msgsnd(2)
I to send a message
I note return: ssize t (signed size) vs. size t

Bob Lewis WSU CptS 360 (Spring, 2022)

man:msgget(2)
man:msgsnd(2)

Unit 15: Interprocess Communication

Message Queues II

I msgrcv(2)
I to receive a message
I the (”typ”) argument lets us screen messages:

I typ == 0

first message on queue
I typ > 0

first message of message type typ
I typ < 0

first message with message type ≤ |typ|
I msgctl(2)

I does miscellaneous operations on message queues
I deleting them
I setting them for nonblocking I/O

I kind of like ioctl(2) on devices or fcntl(2) on files.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:msgrcv(2)
man:msgctl(2)
man:ioctl(2)
man:fcntl(2)

Unit 15: Interprocess Communication

Message Queues Examples

I unidirectional message passing:
(run demos/dn ipc chat)

I bidirectional message passing:
(run demos/dn ipc oracle)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Message Queues Reconsidered

I According to Stevens & Rago, message queues for “normal”
messages don’t offer much advantages over local AF UNIX

(next unit) sockets.

I They’re still in use, though.

I Don’t use them for new stuff.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Semaphores I

I slightly more flexible than a mutex

I (originally: visual signalling device)

I Simple ones start at one and become zero when resource is in
use. (i.e. they’re mutexes)

I XSI IPC semaphores
I start at a positive integer
I resource is locked when the count reaches zero
I somewhat more useful than mutexes, this allows you to restrict

the number of users of a resource to something other than one

I semget(2)
gets one (or more) semaphores

I semctl(2)
does miscellaneous operations (such as deleting semaphores)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:semget(2)
man:semctl(2)

Unit 15: Interprocess Communication

Semaphores II

I semop(2)
I (look at struct sembuf)
I the “thermometer”:

I sem op > 0

releasing resources by the process
I sem op < 0

obtaining resources by the process

I S & R on record locking vs. semaphores:
Record locking is slower, but easier.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:semop(2)

Unit 15: Interprocess Communication

Shared Memory

Maps the same area of memory into two or more processes.

I shmget(2)

I shmctl(2)
I shmat(2)

I attaches shared memory to address space
I virtual addresses may differ in two clients

I shmdt(2)
detaches (like an unlink) shared memory from address space

I Access to shared memory is often controlled by semaphores.

I Where does shared memory fit into a virtual address space?

(run demos/dn shm)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:shmget(2)
man:shmctl(2)
man:shmat(2)
man:shmdt(2)

Unit 15: Interprocess Communication

Client-Server Properties

I fork-exec
I client forks and execs server

I bidirectional pipes can be used
I server can be SetUID, looking at clients real UID (which it

inherits) to verify permission beyond filesystem

I server can only send data, not – for instance – a file
descriptor, back to a parent

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 15: Interprocess Communication

Communication with Daemons

I can’t use pipes for this

I FIFOs possible, but message queues better.

I single queue per daemon

I multiple queues, one per client (but no select() call available.)

I can use memory segments with semaphores as an alternative
to message queues

Bob Lewis WSU CptS 360 (Spring, 2022)

man:select()

	Unit 15: Interprocess Communication

