
Unit 13: Threads

CptS 360 (System Programming)
Unit 13: Threads

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Motivation

I Threads are in very common use today.

I They can take advantage of multi-core architectures.

I The boss/flunky architecture they present themselves to suits
a wide variety of applications.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

References

I Stevens & Rago Ch. 11

I Stones & Matthew “Beginning Linux Programming”

I man pages (mostly pthreads)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Thread Concepts

I A thread, or thread-of-execution, is that part of a process
which follows a sequence of instructions, accessing data and
requesting system services as needed.

I All processes have at least one thread.

I We are concerned here with processes that have more than
one thread.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Thread Benefits

I Threads can deal cleanly with asynchronous events.

I Threads can make use of multiprocessors (but they don’t have
to).

I Threads are easier to manage than multiple processes (with
shared memory).

I Threads can improve response time: one thread can be
blocked while others proceeed.

I Example: A Simple Server Architecture
I One thread synchronizes UI/GUI with internal data structures.
I One thread dispatches others to fulfill requests.
I N − 2 threads focus on individual requests.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

POSIX Threads, a.k.a. “pthreads””

I supported almost everywhere

I (run demos/dn check posix)

I can be implemented portably even if multiprocessors not
required.

I require some tricky (but portable) assembler language

I require one special instruction (recall it from CptS 260?)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

pthread Thread Execution

I creation
I pthread create(3)
I Note typo in pthread create(3) prototype on bottom of p 357.

(“void” argument should be “void *”).
I Under Ubuntu, you may need to install the manpages-posix

and manpages-posix-dev packages to get the pthreads

man pages.

I identification
I pthread self(3)
I pthread equal(3)

I (run demos/dn thread id)
I passing thread-specific data

I as argument
I in global struct keyed by thread id (but this may be tricky)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pthread_create(3)
man:pthread_create(3)
man:pthread_self(3)
man:pthread_equal(3)

Unit 13: Threads

pthreads Demos

I (run demos/dn thread argument)

I (run demos/dn exit status)

I (run demos/dn bad exit)

I (run demos/dn cleanup)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

The Bead Analogy

I Think of a single-threaded program as beads on a wire
representing clock time, with the beads being individual
instructions.

I Beads may not be all together on a multitasking OS,
especially if there’s OS work to be done.

I Multithreading allows your program to create new wires and
specify new beads to go along them, but again, the beads
may not be all together. Beads can slide back and forth on
any given wire.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

The Bead Analogy II

Consider the statement

a[++n] = 42:

Where a[] is a variable in shared memory. In MIPS, this would
compile to something like:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2, a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Now run two threads of this side-by-side. Remember: Each
machine instruction is a “bead.”

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Case 1: Effectively Serial

If n starts out as 2, what is its final value?
Thread 0:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2,a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Thread 1:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2, a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Case 2: Another Possible Sequence

Thread 0:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2, a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Thread 1:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2, a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Case 3: A Slight Change to Case 2

Thread 0:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2, a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Thread 1:

la $t0,n

lw $t1,($t0)

addi $t1,$t1,1

sw $t1,($t0)

la $t2, a

add $t2,$t2,$t1

li $t3,42

sw $t3,($t2)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

The Synchronization Problem

Lessons learned:

I The global order in which the beads are executed may affect
the result.

I The result may depend on the order in which the instructions
are scheduled by the processor.

I Sometimes or even most of the time, it may do the right
(serial) thing.

To solve this problem, we need some way to synchronize access to
shared memory.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Mutexes

Mutual exclusion “devices” (an abstraction), a.k.a mutexes declare
a certain sequence of (instruction) beads to be accessed by only
one thread at a time. They can lock both data and code.

I pthread mutex init(3)

I pthread mutex lock(3)

I pthread mutex unlock(3)

I pthread mutex trylock(3)

I pthread mutex destroy(3)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pthread_mutex_init(3)
man:pthread_mutex_lock(3)
man:pthread_mutex_unlock(3)
man:pthread_mutex_trylock(3)
man:pthread_mutex_destroy(3)

Unit 13: Threads

Mutex Demos

These demos show the need for and use of mutexes:

I (see demos/dn mutex conceptual)

I (run demos/dn stdout buffered)

I (run demos/dn stdout unbuffered)

I (run demos/dn clock unthreaded)

I (run demos/dn clock threaded)

I (run demos/dn stopwatch without mutex)

I (run demos/dn stopwatch with mutex)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Restricting Access With Mutexes

I to data structures ...
I If you want to locking access to a data structure, consider

adding a mutex (“lock”) to the structure. (in constructor?)
I To access the data structure, a function must first acquire the

mutex and must release it when done.
I to code ...

I A block of code protected by a mutex is called a critical
section.

1. create mutex
2. acquire mutex
3. run critical section code
4. release mutex
5. delete mutex

I Be careful of any setjmp/longjmps in or below #3. (Think
“finally” in an exception.)

I Remember that mutexes take time to create, acquire, release,
and delete, so these may not always be the most efficient
approaches.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Mutex Lock Demos

I (see demos/dn two mutexes conceptual)

I (see demos/dn simpler locking conceptual)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Deadlock Avoidance

I What is deadlock?

1. multiple mutexes to acquire
2. multiple threads running
3. Thread 0 holds a mutex Thread 1 wants, but needs a mutex B

holds and vice versa.
4. Lock ordering not always possible.

I (see demos/dn two mutexes)

I (see demos/dn simpler locking)

I The second is simpler because it uses the hash list lock to
protect the list traversal as well.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 13: Threads

Reader-Writer Locks

Mutexes have two states: locked and unlocked. Reader-writer
locks have three: read-locked, write-locked, and unlocked.
Read-locking permits any number of readers. Write-locking
permits only one writer.

I pthread rwlock init(3)

I pthread rwlock destroy(3)

I pthread rwlock rdlock(3)

I pthread rwlock tryrdlock(3)

I pthread rwlock wrlock(3)

I pthread rwlock trywrlock(3)

I pthread rwlock unlock(3)

I (see demos/dn rwlock conceptual)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pthread_rwlock_init(3)
man:pthread_rwlock_destroy(3)
man:pthread_rwlock_rdlock(3)
man:pthread_rwlock_tryrdlock(3)
man:pthread_rwlock_wrlock(3)
man:pthread_rwlock_trywrlock(3)
man:pthread_rwlock_unlock(3)

Unit 13: Threads

Condition Variables

These wait for a “condition variable” to become ready. These can
implement “barriers”.
I pthread cond init(3)

I or set condition variable to PTHREAD COND INITIALIZER
I cond attr arg is ignored on Linux

I pthread cond signal(3)
I wakes up one thread.

I pthread cond broadcast(3)
I wakes up all of them.

I pthread cond wait(3)

I pthread cond timedwait(3)

I pthread cond destroy(3)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pthread_cond_init(3)
man:pthread_cond_signal(3)
man:pthread_cond_broadcast(3)
man:pthread_cond_wait(3)
man:pthread_cond_timedwait(3)
man:pthread_cond_destroy(3)

Unit 13: Threads

Semaphores I

I Don’t confuse these with IPC semaphores (later).
I they’re intended for threads and only work within one process

(for now).

I sem init(3)
I creates a semaphore

I sem post(3)
I always increases the value of the semaphore by 1.
I It does this atomically, so if two processes call sem post() at

the same time, the semaphore is guaranteed to be incremented
by two.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sem_init(3)
man:sem_post(3)
man:sem_post()

Unit 13: Threads

Semaphores II

I sem wait(3)
I atomically decreases the value of the semaphore by 1, but

waits until the semaphore is nonzero before doing so.
I If the semaphore is 0, the calling thread waits.

I sem trywait(3)
I Like sem wait(), but doesn’t wait.

I sem destroy()
I gets rid of a semaphore.

I (run demos/dn semaphore)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sem_wait(3)
man:sem_trywait(3)
man:sem_wait()
man:sem_destroy()

	Unit 13: Threads

