
Unit 12: Process Relations

CptS 360 (System Programming)
Unit 12: Process Relations

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 12: Process Relations

Motivation

I Processes are fundamental components of operating systems.

I “How Does a Shell Work?”

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 12: Process Relations

References

I Stevens & Rago Ch. 9

I man pages

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 12: Process Relations

4.3BSD (and similar UNIX) Terminal Logins

Remember: systemd(1) (aka init, PID 1, see below) forks itself and
exec*()s getty(1) on all tty lines specified in /etc/init/tty*.conf.
getty(1)

I opens terminal device

I reads user name

I sets initial environment

I exec*()s login(1)

login(1)

I gets and verifies password

I cd’s to home directory

I exec*()s $SHELL as if

execl($SHELL, "-" + $(basename $SHELL), NULL)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:systemd(1)
man:exec*()
man:getty(1)
man:getty(1)
man:exec*()
man:login(1)
man:login(1)
man:exec*()

Unit 12: Process Relations

4.3BSD (and similar UNIX) Terminal Logouts

When login shell exits, systemd(1)

I (ultimately) gets SIGCHLD

I starts getty(1) over again on tty line

Bob Lewis WSU CptS 360 (Spring, 2022)

man:systemd(1)
man:getty(1)

Unit 12: Process Relations

What About Graphical Logins?

I now there’s a “display manager” (named *dm, by convention)
involved

I take a look at pstree(1)

I Q: Why are the ”gnome-*” utils children of ”systemd”?

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pstree(1)

Unit 12: Process Relations

systemd : A New, Improved init(1)

Improvements:

I moves what used to
be in /etc/inittab

(as described in S &
R) to /etc/init/

(q.v.)

I clean, straightforward,
and efficient design

I simpler boot process

I concurrent and
parallel processing at
boot

I better API

I simple unit syntax

I ability to remove
optional components

I low memory footprint

I improved technique to
express dependencies

I initialization
instruction written in
config file and not in
shell script

I make use of Unix
Domain Socket

I job scheduling using
systemd calendar
timers

I event logging with
journald

I choice of logging
System events with
systemd as well as
syslog

I logs are stored in
binary file

I systemd state can be
preserved to be called
later in future

I track process using
kernel’s cgroup and
not PID

I users login managed
by systemd-logind

I better integration
with Gnome for
interoperability

Bob Lewis WSU CptS 360 (Spring, 2022)

man:init(1)

Unit 12: Process Relations

Network Logins

What happens when you log in to a machine over a network?

I systemd(1) starts up inetd(8)
I TCP connection causes inetd to

I fork
I exec sshd(8) (or, in olden days, telnetd(8))
I sshd (or telnetd) starts login(1), which then behaves as

above console but uses “pseudo-tty”s (explain)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:systemd(1)
man:inetd(8)
man:sshd(8)
man:telnetd(8)
man:login(1)

Unit 12: Process Relations

Process Groups

Processes are organized into groups, mainly for signal delivery
purposes.
I calls:

I setpgrp(2)
I setpgid(2)

I This creates a new process group
I takes pid t pid, pid t pgid

I getpgid(2)
I getpgrp(2)

I takes pid t pid, pid t pgid
I sets the process GID of pid to pgid.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:setpgrp(2)
man:setpgid(2)
man:getpgid(2)
man:getpgrp(2)

Unit 12: Process Relations

Job Control

In job control shells,

I After fork(), both parent and child call setpgrp(2).

I One call is redundant, but this avoids a race condition by
guaranteeing that the child is in a different process group.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fork()
man:setpgrp(2)

Unit 12: Process Relations

Sessions

I A session is a collection of process groups.

I Process groups determine signal delivery, but sessions
determine “controlling tty” (see below).

I setsid(2)
I If the calling process is not already a session owner, a new

session is created with no controlling tty.
I It’s an error if it is already a session owner.
I It also belongs to a newly-created process group.
I A preceding fork() with parental exit() guarantees that the call

will not fail.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:setsid(2)
man:fork()
man:exit()

Unit 12: Process Relations

Controlling Terminal

I A process can have at most one of these.

I Session gets controlling terminal (tty or pty).

I Within a session, there’s a foreground process group and 0 or
more background process groups.

I Keyboard interrupts go to the foreground process group only.

I Any process can get to its controlling tty (if it has one) by
opening /dev/tty.

I Controlling tty set (a la BSD) via

ioctl(fdtty, TIOCSCTTY, NULL)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 12: Process Relations

tcgetpgrp(2) and tcsetpgrp(2)

sets controlling process group

Bob Lewis WSU CptS 360 (Spring, 2022)

man:tcgetpgrp(2)
man:tcsetpgrp(2)

Unit 12: Process Relations

Job Control

init(1) or inetd(1)

getty(1) or sshd(1)

fork(1)/exec(1)

login(1)

exec(), after setsid(),
 then establish control tty

login shell

 exec()

background process group(s)

setpgid()

terminal driver

 tcsetpgrp() to set control
 tty process group

foreground process group

setpgid()

changes in child status

write to terminal
generates SIGTTOU

read from terminal
generates SIGTTIN

terminal-generated signals

user

 changes in child status

terminal I/O

(after S & R Figure 9.9)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 12: Process Relations

Shell Execution of Programs

result of

ps | cat1 | cat2

after S & R Figure 9.9

I How are the pipes set up?

sh
(parent)

sh
(child #1)

fork

sh
(grandchild #1)

fork

sh
(grandchild #2)

fork

cat2

 execps

 exec

cat1

 exec

 parental
 notification

on exit

pipe

pipe

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 12: Process Relations

Orphaned Process Groups

I processes can become orphans

I so can whole groups

I demo Stevens & Rago Program 9.11

Bob Lewis WSU CptS 360 (Spring, 2022)

	Unit 12: Process Relations

