
Unit 11: Signals

CptS 360 (System Programming)
Unit 11: Signals

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Motivation

I Signals are the most basic interprocess communication
mechanisms.

I If they work for you, they are comparatively simple to use.

I They’re supported everywhere.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

References

I Stevens & Rago Ch. 10

I man pages

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Signals Overview

I signals are:
I “software interrupts”
I asynchronous

I signals have names

I see signal(7)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:signal(7)


Unit 11: Signals

Signals are Generated by:

I terminal (or keyboard) (e.g., Ctrl-C)
I hardware exceptions, e.g.

I divide by 0
I floating point overflow/underflow
I segmentation violation
I bus error

I software conditions (not hardware related):
I SIGALRM
I SIGPIPE
I SIGURG

I explicitly (see below)
I from the command line (e.g., kill(1))
I from a program (e.g., kill(2))

Bob Lewis WSU CptS 360 (Spring, 2022)

man:kill(1)
man:kill(2)


Unit 11: Signals

Possible Signal Actions

I ignore the signal

I catch the signal (call a user-defined “handler” function)
I do the default thing:

I ignore
I terminate
I dump core and terminate

I stop process

I continue (stopped process)

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Explicitly Sending Signals

All signal implementations use these.

I kill(pid, sig)

sends a signal sig to a process pid

I raise(sig)

sends a signal to the process that calls it

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Signal Implementations: An Overview

I signal(2)
I simplest kind of signal handling
I sometimes all you need
I supported by everybody, including POSIX

I sigset(3)
I System V
I non-POSIX
I avoid use

I sigvec(3)
I BSD
I non-POSIX
I avoid use

I sigaction(2)
I “robust”
I supported by everybody, including POSIX
I use for detailed control

Bob Lewis WSU CptS 360 (Spring, 2022)

man:signal(2)
man:sigset(3)
man:sigvec(3)
man:sigaction(2)


Unit 11: Signals

signal(2) is Unreliable (aka “Non-Robust”)

I signal(2) (q.v.) works most of the time, but...

I handler reset to default behavior when called
So even if you immediately restore the handler, there’s a short
interval when the default behavior (e.g., “Core”) can happen.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:signal(2)
man:signal(2)


Unit 11: Signals

Interrupted System Calls

I What happens to interrupts that happen during a system call?
(recall system call vs. function)

I What you want to have happen may depend on the call:
I If the call is going to complete pretty quickly, wait until the

call completes before delivering the signal normally.
I This is a “fast” system call.
I example: time(2)

I If the call might wait a long time, interrupt the call and return
an error to the user.

I This is a “slow” system call.
I example: wait(2) (q.v.)
I reads from/writes to pipes, terminal devices, network devices
I waits on external conditions (e.g. modem)
I Scenario: User walks away from a terminal the program is

reading.
I caller must deal with the interrupt (errno is EINTR).
I exception: disk I/O is never considered slow

Bob Lewis WSU CptS 360 (Spring, 2022)

man:time(2)
man:wait(2)


Unit 11: Signals

Automatic Restart

I system call restarted after signal is handled, if it is

I allowed in 4.2BSD for system calls on slow devices: ioctl(2),
read(2), readv(2), write(2), and writev(2).

I and always for wait(2) and waitpid(2).

I S & R Figure 10.3 discusses various implementations of
signals and automatic restart

Bob Lewis WSU CptS 360 (Spring, 2022)

man:ioctl(2)
man:read(2)
man:readv(2)
man:write(2)
man:writev(2)
man:wait(2)
man:waitpid(2)


Unit 11: Signals

Dealing with an Interruptable System Call

Interrupted slow calls return error (-1) and set errno to EINTR.
For example, if fd was an open terminal, you might use this code:

while ((n = read(fd, buf, ct)) < 0) {

if (errno != EINTR) {

// deal with other error corresponding to ‘errno‘

}

}

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Non-Reentrant Functions

I Review: What are they?
I Q: Why do they cause problems when called from signal

handlers, even when you’re not using multiple threads?
I Suppose you’re in the middle of a non-reentrant function when

a signal handler is called.

I General rules:
I Never call a non-reentrant function from a signal handler.
I If your handler calls a system function, save and restore errno.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

SIGCHLD Semantics

I On Sys V systems, it’s SIGCLD and it behaves oddly. (That’s
all we’ll say about that.)

I On BSD systems (and Linux), parent sets handler that will
get called when child’s status changes.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Reliable (“Robust”) Signal Technology and Semantics

I New, improved.
I Terminology: signals are...

I generated
The signal has been by sent by the signalling process.

I pending
The signal has been generated and is placed at the end of the
signal queue to be delivered.

I blocked
When the signal is generated, it waits in a signal queue until it
is unblocked.

I delivered
Action taken (e.g. handler called). The action may be reset
while the signal is blocked.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 11: Signals

Multiple Signals

Dealing with multiple signals depends on whether they’re real-time
or not.
I non-real time signals (e.g., SIGINT)

I repeats of the same signal are ignored within the handler
I with robust signal handling (i.e., sigaction(2)) alternating

signals are blocked, not ignored (as with signal(2)))
I signal(2)

I real time signals (numbers between SIGRTMIN and SIGRTMAX,
inclusive)
I no predefined interpretation (cf. SIGUSR*)
I allow queueing
I may be prioritized

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigaction(2)
man:signal(2)
man:signal(2)


Unit 11: Signals

sigaction(2)

I the primary robust signal function
I sets

I handler
I mask (a sigset t) of additional signals to block while handler

is called
I a variety of flags

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigaction(2)


Unit 11: Signals

Signal Set (sigset t)

I definition:
the set of signals currently-blocked by the process

I formerly represented by an “unsigned int” signal mask,
they now use a sigset t (which is actually an array)

Allows more signals than will fit in an int (or a long) variable,
even though that’s all there are now.

I sigemptyset(3)

I sigfillset(3)

I sigaddset(3)

I sigdelset(3)

I sigismember(3)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigemptyset(3)
man:sigfillset(3)
man:sigaddset(3)
man:sigdelset(3)
man:sigismember(3)


Unit 11: Signals

sigprocmask(2)

I queries and/or sets signal mask

I arguments allow adding to, subtracting from, or setting mask

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigprocmask(2)


Unit 11: Signals

sigpending(2)

I lets you see what signals, if any, are pending

I sets argument

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigpending(2)


Unit 11: Signals

sigsetjmp(2) and siglongjmp(2)

I recall setjmp(3) / longjmp(3)

I When signal caught, it’s now added to signal mask and
restored when handler returns.

I But if handler calls longjmp(2), signal effectively blocked
until?

I siglongjmp(3) has an argument to allow user control of
whether or not to save/restore the signal mask.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigsetjmp(2)
man:siglongjmp(2)
man:setjmp(3)
man:longjmp(3)
man:longjmp(2)
man:siglongjmp(3)


Unit 11: Signals

sigsuspend(2)

Earlier problem:

I If signal is delivered after sigprocmask(2) and before a
pause(2), the pause(2) may wait forever.

I sigsuspend(2) temporarily sets the signal mask to its
argument and then suspends (like pause(2)) until a signal is
received that is either handled or causes termination.

I Hence, sigsuspend(2) combines both a reset of the mask with
a pause(2) atomically.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sigsuspend(2)
man:sigprocmask(2)
man:pause(2)
man:pause(2)
man:sigsuspend(2)
man:pause(2)
man:sigsuspend(2)
man:pause(2)


Unit 11: Signals

abort(3)

I Actually sends SIGABRT to the process.

I If SIGABRT has handler, it is invoked but never returns to the
process.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:abort(3)


Unit 11: Signals

Interrupts and system(3)

I POSIX.2 says system() should ignore SIGINT and SIGQUIT

and block SIGCHLD.

I The latter prevents signals about grandchildren being sent to
the calling process.

I Instead, they are handled in the child shell.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:system(3)
man:system()


Unit 11: Signals

alarm(2)

I after given number of seconds, it sends SIGALRM to the
process that called it (equivalent to raise(SIGALRM)

I cancels any previous alarm() call

I alarm(0) disables alarms

I typical application: implement a timed read

I demos:
(Run the demos/dn timed read 1st try demo.) (S & R,
Figure 10.10)
(Run the demos/dn timed read 2nd try demo.) (S & R,
Figure 10.11)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:alarm(2)
man:alarm()


Unit 11: Signals

pause(2)

I wait for signal to be caught

I resumes when handler exits

I do not confuse with wait(2)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pause(2)
man:wait(2)


Unit 11: Signals

sleep(3)

I suspends the calling process for an int number of seconds
I usually implemented with SIGALRM

I (therefore) do not use with alarm(3)

I more precise timing: usleep(3)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:sleep(3)
man:alarm(3)
man:usleep(3)


Unit 11: Signals

Job-Control Signals

These are

I SIGCHLD

child process change of status

I SIGCONT

continue process if stopped

I SIGSTOP

stop process (can’t catch, can’t ignore)

I SIGTSTP

interactive stop (Ẑ)

I SIGTTIN

background process reads from controlling terminal

I SIGTTOU

background process writes to controlling terminal

Bob Lewis WSU CptS 360 (Spring, 2022)


	Unit 11: Signals

