CptS 360 (System Programming)
Unit 11: Signals

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022



Motivation

» Signals are the most basic interprocess communication
mechanisms.

> If they work for you, they are comparatively simple to use.
> They're supported everywhere.



References

» Stevens & Rago Ch. 10

> man pages



Signals Overview

P signals are:

> ‘“software interrupts”
» asynchronous

P signals have names
» see signal(7)


man:signal(7)

Signals are Generated by:

» terminal (or keyboard) (e.g., Ctrl-C)
» hardware exceptions, e.g.
» divide by 0
> floating point overflow/underflow
P segmentation violation
» bus error
> software conditions (not hardware related):
> SIGALRM
> SIGPIPE
» SIGURG
> explicitly (see below)

» from the command line (e.g., kill(1))
> from a program (e.g., kill(2))


man:kill(1)
man:kill(2)

Possible Signal Actions

> ignore the signal
» catch the signal (call a user-defined "handler” function)
» do the default thing:

> ignore

> terminate

» dump core and terminate

» stop process
» continue (stopped process)



Explicitly Sending Signals

All signal implementations use these.

> kill(pid, sig)
sends a signal sig to a process pid

> raise(sig)
sends a signal to the process that calls it



Signal Implementations: An Overview

» signal(2)
» simplest kind of signal handling
» sometimes all you need
» supported by everybody, including POSIX
» sigset(3)
» System V
» non-POSIX
» avoid use
» sigvec(3)
» BSD
» non-POSIX
» avoid use
» sigaction(2)
> “robust”

» supported by everybody, including POSIX
» use for detailed control


man:signal(2)
man:sigset(3)
man:sigvec(3)
man:sigaction(2)

is Unreliable (aka “Non-Robust™)

» signal(2) (q.v.) works most of the time, but...

» handler reset to default behavior when called
So even if you immediately restore the handler, there's a short
interval when the default behavior (e.g., “Core”) can happen.


man:signal(2)
man:signal(2)

Interrupted System Calls

» What happens to interrupts that happen during a system call?
(recall system call vs. function)

» What you want to have happen may depend on the call:

» If the call is going to complete pretty quickly, wait until the
call completes before delivering the signal normally.

>
>

This is a “fast” system call.
example: time(2)

> If the call might wait a long time, interrupt the call and return
an error to the user.

>

vvyvyy

vy

This is a “slow” system call.

example: wait(2) (q.v.)

reads from/writes to pipes, terminal devices, network devices
waits on external conditions (e.g. modem)

Scenario: User walks away from a terminal the program is
reading.

caller must deal with the interrupt (errno is EINTR).
exception: disk 1/O is never considered slow


man:time(2)
man:wait(2)

Automatic Restart

» system call restarted after signal is handled, if it is

» allowed in 4.2BSD for system calls on slow devices: ioct/(2),
read(2), readv(2), write(2), and writev(2).

» and always for wait(2) and waitpid(2).

> S & R Figure 10.3 discusses various implementations of
signals and automatic restart


man:ioctl(2)
man:read(2)
man:readv(2)
man:write(2)
man:writev(2)
man:wait(2)
man:waitpid(2)

Dealing with an Interruptable System Call

Interrupted slow calls return error (-1) and set errno to EINTR.
For example, if £d was an open terminal, you might use this code:

while ((n = read(fd, buf, ct)) < 0) {
if (errno != EINTR) {
// deal with other error corresponding to ‘err:



Non-Reentrant Functions

» Review: What are they?

» Q: Why do they cause problems when called from signal
handlers, even when you're not using multiple threads?

» Suppose you're in the middle of a non-reentrant function when
a signal handler is called.
» General rules:

» Never call a non-reentrant function from a signal handler.
» |If your handler calls a system function, save and restore errno.



SIGCHLD Semantics

» On Sys V systems, it's SIGCLD and it behaves oddly. (That's
all we'll say about that.)

» On BSD systems (and Linux), parent sets handler that will
get called when child’s status changes.



Reliable (“Robust”) Signal Technology and Semantics

> New, improved.
> Terminology: signals are...
» generated
The signal has been by sent by the signalling process.
» pending
The signal has been generated and is placed at the end of the
signal queue to be delivered.
» blocked
When the signal is generated, it waits in a signal queue until it
is unblocked.
> delivered
Action taken (e.g. handler called). The action may be reset
while the signal is blocked.



Multiple Signals

Dealing with multiple signals depends on whether they're real-time
or not.
» non-real time signals (e.g., SIGINT)
> repeats of the same signal are ignored within the handler
> with robust signal handling (i.e., sigaction(2)) alternating
signals are blocked, not ignored (as with signal(2)))
> signal(2)
» real time signals (numbers between SIGRTMIN and SIGRTMAX,
inclusive)
> no predefined interpretation (cf. SIGUSR*)

» allow queueing
» may be prioritized


man:sigaction(2)
man:signal(2)
man:signal(2)

» the primary robust signal function

> sets

> handler
» mask (a sigset_t) of additional signals to block while handler

is called
P a variety of flags


man:sigaction(2)

Signal Set (sigset_t)

| 2

definition:

the set of signals currently-blocked by the process

> formerly represented by an “unsigned int"” signal mask,

they now use a sigset_t (which is actually an array)

Allows more signals than will fit in an int (or a long) variable,
even though that's all there are now.

>

>
>
>
>

sigemptyset(3)
sigfillset(3)
sigaddset(3)
sigdelset(3)
sigismember(3)


man:sigemptyset(3)
man:sigfillset(3)
man:sigaddset(3)
man:sigdelset(3)
man:sigismember(3)

» queries and/or sets signal mask

» arguments allow adding to, subtracting from, or setting mask


man:sigprocmask(2)

> lets you see what signals, if any, are pending

P> sets argument


man:sigpending(2)

» recall setjmp(3) / longjmp(3)
» When signal caught, it's now added to signal mask and
restored when handler returns.

» But if handler calls longjmp(2), signal effectively blocked
until?

» siglongjmp(3) has an argument to allow user control of
whether or not to save/restore the signal mask.


man:sigsetjmp(2)
man:siglongjmp(2)
man:setjmp(3)
man:longjmp(3)
man:longjmp(2)
man:siglongjmp(3)

Earlier problem:

> If signal is delivered after sigprocmask(2) and before a
pause(2), the pause(2) may wait forever.

» sigsuspend(2) temporarily sets the signal mask to its
argument and then suspends (like pause(2)) until a signal is
received that is either handled or causes termination.

» Hence, sigsuspend(2) combines both a reset of the mask with
a pause(2) atomically.


man:sigsuspend(2)
man:sigprocmask(2)
man:pause(2)
man:pause(2)
man:sigsuspend(2)
man:pause(2)
man:sigsuspend(2)
man:pause(2)

» Actually sends SIGABRT to the process.

» If SIGABRT has handler, it is invoked but never returns to the
process.


man:abort(3)

Interrupts and

» POSIX.2 says system() should ignore SIGINT and SIGQUIT
and block SIGCHLD.

P The latter prevents signals about grandchildren being sent to
the calling process.

P Instead, they are handled in the child shell.


man:system(3)
man:system()

v

after given number of seconds, it sends SIGALRM to the
process that called it (equivalent to raise (SIGALRM)

cancels any previous alarm() call
alarm(0) disables alarms

typical application: implement a timed read

vvyyy

demos:

(Run the demos/dn _timed_read_1st_try demo.) (S & R,
Figure 10.10)

(Run the demos/dn _timed_read 2nd_try demo.) (S & R,
Figure 10.11)


man:alarm(2)
man:alarm()

> wait for signal to be caught

» resumes when handler exits
» do not confuse with wait(2)


man:pause(2)
man:wait(2)

» suspends the calling process for an int number of seconds
» usually implemented with SIGALRM
> (therefore) do not use with alarm(3)

» more precise timing: usleep(3)


man:sleep(3)
man:alarm(3)
man:usleep(3)

Job-Control Signals

These are

>

2

SIGCHLD
child process change of status

SIGCONT

continue process if stopped

SIGSTOP

stop process (can't catch, can't ignore)

SIGTSTP

interactive stop (Z)

SIGTTIN

background process reads from controlling terminal

SIGTTOU
background process writes to controlling terminal



	Unit 11: Signals

