
Unit 10: Process Control

CptS 360 (System Programming)
Unit 10: Process Control

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 10: Process Control

Motivation

I Processes are fundamental components of operating systems.

I “Where do processes come from?”

I Multiple processes take advantage of multi-core architectures
trivially, but you need to control them.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 10: Process Control

References

I Stevens & Rago Ch. 8

I man pages

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 10: Process Control

Process, User, and Group Identifiers

These are attributes of your process.
I the process and its parent IDs

I getpid(2)
I getppid(2)

I user IDs
I getuid(2)
I geteuid(2)

I group IDs
I getgid(2)
I getegid(2)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:getpid(2)
man:getppid(2)
man:getuid(2)
man:geteuid(2)
man:getgid(2)
man:getegid(2)

Unit 10: Process Control

fork(2)

I only way to create a new process in POSIX

I near-clone (”child”) of parent process created

I first half of the famous “fork-exec” concept
(which is also known as “spawn”)

I on Linux, fork(2) is implemented as a special case of clone(2),
which is
I more flexible
I less portable (being non-POSIX)
I also used for threads

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fork(2)
man:fork(2)
man:clone(2)

Unit 10: Process Control

The Child’s Inheritance

I UIDs (all 4)

I supplementary GIDs

I process group ID

I session ID (?)

I controlling terminal

I set-user-ID and set-group-ID flags

I current working directory

I root directory

I umask

I signal mask

I etc. (see Stevens & Rago)

Copying all of this stuff to the child process is part of fork(2)’s
overhead.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fork(2)

Unit 10: Process Control

Child vs. Parent

child and parent differ in

I return value from fork(2)

I process ID’s

I parent PID’s (duh)

I time usages of child are zero’d

I file locks not inherited

I pending alarms (SIGALRM) cleared for child

I pending signal set is cleared for child

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fork(2)

Unit 10: Process Control

The Child’s Memory

I Child gets copy of all of parent’s data space:
I initialized
I uninitialized
I stack
I heap
I environ and argv[]

I Linux implements “copy-on-write”
I reduces overhead (usually), especially if a fork(2) is following
I child’s pages may diverge from parent’s

(consider implications for low-level vs. stdio on parent/child
I/O transfers.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fork(2)

Unit 10: Process Control

Uses for fork(2):

I spawning a different process

I accumulating run statistics on child

I debugging child (gdb(1) uses this)
I parallel processing, e.g.

I a network server
(in general, threads would be better for this)

I On UNIX, vfork(2) guarantees that child executes first.
(Don’t count on this, though.)

I Under Linux, vfork(2) is almost a synonym for fork(2).

(Run the demos/dn sr3e fork1 demo.) (S & R Figure 8.1?)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fork(2)
man:gdb(1)
man:vfork(2)
man:vfork(2)
man:fork(2)

Unit 10: Process Control

The Semantics of exit(3)

I If parent terminates before child,
I init(1) (on Linux, systemd(1)) process becomes new parent

I If child terminates before parent wait(2)s for it,
I it’s a “zombie”. (One of the cooler UNIX concepts.)

I Avoid creating lots of zombies. (You’ve seen the movies!)

I Avoid zombies completely by forking twice.
(see S & R Figure 8.8)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:exit(3)
man:init(1)
man:systemd(1)
man:wait(2)

Unit 10: Process Control

Race Conditions

I Q: What’s a race condition?
A: Output depends on the arbitrary order in which processes
run.
I Example: Child used to create a file that the parent is going to

read.
I If child creates, writes, and closes the file first, everything okay.
I If parent calls open(2) first,

I child’s open(2) might fail
I parent’s read(2) might contain only partial data

I Especially annoying: It might work most of the time, so test
for it is unreliable.

I Solution: Parental “wait”.

I Other situations may not be so easy.

I General solution: use IPC (e.g., signals) to coordinate.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:open(2)
man:open(2)
man:read(2)

Unit 10: Process Control

wait(2)

When parent has nothing else to do ...

I wait(2)
wait for any child to exit

I waitpid(2)
wait for a particular child to exit

I waitid(2)
waits for specific conditions on specific children

I Use handy macros if you want to find out why child exited.

(Run the demos/dn sr3e wait1 demo.) (S & R Figures 8.5)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:wait(2)
man:wait(2)
man:waitpid(2)
man:waitid(2)

Unit 10: Process Control

execve(2) and Friends

I execve(2)
I the basic system call
I replaces caller’s address space with that contained in an

executable file
I only returns if there’s an error

I second half of the famous “fork-exec” dynamic duo
I friends:

I execl(3)
I execv(3)
I execle(3)
I execlp(3)
I execvp(3)

These are all related...

Bob Lewis WSU CptS 360 (Spring, 2022)

man:execve(2)
man:execve(2)
man:execl(3)
man:execv(3)
man:execle(3)
man:execlp(3)
man:execvp(3)

Unit 10: Process Control

exec* Suffixes Determine...

execlp(3)

execvp(3)

build argv[]

execv(3)

search $PATH

execve(2)

use environ

execl(3)

build argv[]

execle(3)

build argv[]

I What is the child’s enviroment?
I “e”: the caller provides an

environment
I otherwise, it inherits the caller’s

I How does parent pass the arguments?
I “l”: it wants successive “char *”

arguments
I “v”: it takes a single,

NULL-terminated list (like argv[])

I How is the path argument resolved?
I “p”: it searches your $PATH (note

potential security hole). path can be
absolute.

I otherwise, path must be absolute.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 10: Process Control

Changing User IDs and Group IDs

I use the least privilege model to minimize security risk
I setuid(2)

I if you’re root, this sets real, effective, and saved set-user-id
I if you’re setting your uid to your real or saved uid, this works,

but only changes your effective uid.

I setgid(2)
I likewise for gid’s

Bob Lewis WSU CptS 360 (Spring, 2022)

man:setuid(2)
man:setgid(2)

Unit 10: Process Control

How do Scripts Work?

I The file you exec(3) doesn’t need to be a binary file.

I It does, however, need the proper execute bit set.
I “#!” at the start of a file is special to exec*’s:

I The rest of the line is the name of a program to run.
I The rest of the file is sent to that program on standard input.

I This works for any executable exec(3) finds, even your own.

(Run the demos/dn scripts demo.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:exec(3)
man:exec(3)

Unit 10: Process Control

system(3)

I fork-execs a (child) shell

I shell runs command (“/bin/sh -c command”)

I parent waits for child

I some blocked signals can lead to trouble, see suggested fix in
man page

(Run the demos/dn system call demo.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:system(3)

Unit 10: Process Control

Process Accounting

I needs kernel compiled with accounting feature
(I don’t think that applies to WSUTC.)

I acct(2)

I logs accounting information to a log file

I format of file described in acct(5)

I use /usr/include/sys/acct.h to get struct format
(struct acct)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:acct(2)
man:acct(5)

Unit 10: Process Control

User Identification

I These get your process’s login:
I getlogin(3)
I getlogin r(3)

I other possibilities:
I getpwuid(getuid())

I possibility of multiple entries for given UID
I choose shell or home directory by login
I unusual, but legal

I getenv("LOGNAME")
I manpage recommends it
I S & R say not for authentication

Bob Lewis WSU CptS 360 (Spring, 2022)

man:getlogin(3)
man:getlogin_r(3)

Unit 10: Process Control

Process Times

times(2) fills in a struct with

I CPU time spent in user mode by calling process

I CPU time spent in system mode by calling process

I CPU time spent in user mode by all descendents

I CPU time spent in system mode by all descendents

Units are “clock ticks”. To convert them to seconds, divide by
sysconf(SC CLK TCK) (number of clock ticks per second). (See
sysconf(3).) Note: clock t is the same type returned by clock(3),
but in that case the units are defined differently.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:times(2)
man:sysconf(3)
man:clock(3)

	Unit 10: Process Control

