
Unit 9: Process Environment

CptS 360 (System Programming)
Unit 9: Process Environment

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 9: Process Environment

Motivation

I Processes are fundamental components of operating systems.

I Need to understand what data is kept and not kept for a
process.

I Understanding threads requires an understanding of processes.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 9: Process Environment

References

I Stevens & Rago Ch. 7

I man pages

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 9: Process Environment

The main() Function

I prototype:

int main(int argc, char *argv[], char *environ[])

(but you can leave off arguments you don’t use)

I OS promises to call a function with this name first.

I little-known guarantee:

argv[argc] == NULL

I handle command line arguments with getopt(3) and
getopt long(3) (upcoming lab)

(Run the demos/dn main return demo.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:getopt(3)
man:getopt_long(3)

Unit 9: Process Environment

Process Termination

I return status from main()

I exit(3)
I normal exit function
I closes all open files
I frees all memory
I accepts EXIT SUCCESS, EXIT FAILURE, or status

I atexit(3) and on exit(3)
I set exit handlers
I on exit(3) provides more functionality

I exit(2) is like exit(3), but doesn’t call exit handlers
I abort(3)

I exits the program “abnormally”
I uses signal SIGABRT (later), which ...
I may cause core dump

Bob Lewis WSU CptS 360 (Spring, 2022)

man:exit(3)
man:atexit(3)
man:on_exit(3)
man:on_exit(3)
man:_exit(2)
man:exit(3)
man:abort(3)

Unit 9: Process Environment

Environment Variables

I usually set in the shell (including ~/.profile or ~/.bashrc)

$ export NAME =value

I handy for persistent, user-specific configuration variables

I inherited from parent process (which might be the shell)

I prototype:

extern char **environ;

Points to NULL-terminated array of pointers to
(nul-terminated) environment strings, each of the form
“NAME =value ”.
Better to use convenience functions:
I getenv(3)
I putenv(3)
I setenv(3)
I unsetenv(3)

(Run the demos/dn getenv demo.)
Bob Lewis WSU CptS 360 (Spring, 2022)

man:getenv(3)
man:putenv(3)
man:setenv(3)
man:unsetenv(3)

Unit 9: Process Environment

Memory Layout of a Running Program

argv[]
and environ[]

stack

heap

uninitialized
data ("bss")

initialized
data

"text" (code)
0x0

0xbfXXXXXX
(some large
address
< 0xffffffff)

In the executable file:

I “text” (compiled code)

I initialized data

I size of uninitialized (“BSS”)
data

I a list of libraries to link in
(for dynamic linking only)

Set up by OS at run time and
dynamically resized:

I stack

I heap

see: size(1)

(Run the demos/dn uppermem demo.)
Bob Lewis WSU CptS 360 (Spring, 2022)

man:size(1)

Unit 9: Process Environment

Shared (and Unshared) Libraries

I non-shared (“.a”) libraries
I bound at link time
I faster program starts

I shared (“.so”, “.dll”, or “.dylib”) libraries
I bound at compile time
I save on disk space
I allow upgrades more easily

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 9: Process Environment

dlopen(3) Possibilities

These allow dynamic (your program controls) access of “.so” files
for:

I customer-provided compiled code
(provided your customer is trustworthy)

I selectively load pre-digested data at run time

(Run the demos/dn dlmath demo.)
(also see original code from dlopen(3) man page)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:dlopen(3)
man:dlopen(3)

Unit 9: Process Environment

Heap Memory Allocation

I malloc(3)
allocate from heap (uninitialized, fast)

I calloc(3)
like malloc(), but clears data (a bit slower)

I realloc(3)
allocates or resizes an already-allocated heap area

I free(3)
frees a previously-allocated area

Bob Lewis WSU CptS 360 (Spring, 2022)

man:malloc(3)
man:calloc(3)
man:malloc()
man:realloc(3)
man:free(3)

Unit 9: Process Environment

How Heap Allocation Really Works

I deliberately removed from POSIX (but usually in API anyway)

I brk(2)
sets the heap limit

I sbrk(2)
increments the heap limit

I Don’t use these unless you can design a better malloc(3).
(Good luck with that, but if you do, don’t use malloc(3).)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:brk(2)
man:sbrk(2)
man:malloc(3)
man:malloc(3)

Unit 9: Process Environment

Stack Memory Allocation

alloca(3)

I It’s non-POSIX, but seems to have been in UNIX 32V and
similar.

I It allocates memory on its caller’s stack.
Q: On a MIPS machine, it’s easy to allocate stack space.
How?

I Do NOT call free() on this memory.
Q: Why not?

I Memory is “freed” automatically when caller returns (so be
careful!) or does a longjmp(3) (see below)

I Variable-length arrays are more elegant, if they work.
(Run the demos/dn variable stack allocation demo.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:alloca(3)
man:free()
man:longjmp(3)

Unit 9: Process Environment

Optimizing Memory Allocation

I can be a big win for high-performance systems

I especially useful if structures are small

I benchmarking critical

I earn big bucks!

read on...

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 9: Process Environment

Memory Allocation Optimization Using malloc(3)

malloc() and free() whole arrays of same-sized structures at a time

I especially useful when you have lots of small structures

I keep reference counts on those structs or arrays

I free array when max(refCounts) = 0

I maintain your own free list
I Your free() (change the name) puts struct on free list.
I Your malloc() (also change the name) calls malloc() only when

free list is exhausted.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:malloc(3)
man:malloc()
man:free()
man:free()
man:malloc()
man:malloc()

Unit 9: Process Environment

setjmp(3) and longjmp(3) Functions

I These form a nonlocal “goto”.

I Alternative to error handling via the calling stack.

I setjmp(3)
returns 0 if called directly, nonzero if returning from a
longjmp().

I longjmp(3)
returns to matching setjmp() environment with value val.

I Low-level way to handle non-fatal errors.

We’ll cover these more in the lab.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:setjmp(3)
man:longjmp(3)
man:setjmp(3)
man:longjmp()
man:longjmp(3)
man:setjmp()

Unit 9: Process Environment

setjmp()/longjmp() Cautions

I Have to be careful about automatic (stack) variables in calling
frame.
I Sometimes, they’re “rolled back” (to the time of the setjmp(3)

call.).
I Sometimes, they’re the same as at the time longjmp(3) was

called, which is usually what you want.

(Run the demos/dn jmp demo demo.)

I global and static variables are left unchanged

I To prevent rollback, use volatile storage attribute (meaning
“Don’t put this variable in a register”).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:setjmp()
man:longjmp()
man:setjmp(3)
man:longjmp(3)

Unit 9: Process Environment

Resource Limits

I getrlimit(2)
This returns your process’s soft and hard limits.

I setrlimit(2)
This lets you set your soft and hard limits, if you have that
capability.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:getrlimit(2)
man:setrlimit(2)

	Unit 9: Process Environment

