CptS 360 (System Programming)
Unit 6: Files and Directories

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Motivation

> Need to know your way around a filesystem.
> A properly organized filesystem is an aid to computing.

» Symbolic links can be very useful critters.

References

> Stevens & Rago Ch. 4

How Do | Find File “Metadata” ?

» What is metadata?
» stat(2), Istat(2), and fstat(2)
» all return the same information, just different ways of
requesting it

» maintained in the file's inode (sketch)
» Consider this code snippet:

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

struct stat *statBuf;
int st = stat("/home/bobl", statBuf);

Will this compile? Will it run? Always? If not, how could you
make it better?

man:stat(2)
man:lstat(2)
man:fstat(2)

File Types

regular file
directory
character device
block device
FIFO

socket

vVvYvyVvyVvyy

» symbolic link

There are macros to identify all of these. (See stat(2).) They act
on the “stat.st_mode” field.

man:stat(2)

Finding “Unusual” Files

> try
$ 1s -1
and
$ 1s --color
» remember file(1)
» Typical places for such files:

> /tmp
> /dev

but these are just conventions.

man:file(1)

What ID’s are Attached to Files and to Processes?

» Files (and other filesystem objects) have one UID and one
GID attached to them.

» Processes have at least six ID’s associated with them:
» real UID and GID

P established at login
» rarely changed
» effective UID, GID, and supplementary GIDs
P initially == real
» may be reset by SUID programs
» saved UID and GID

> (discussed later)

File Access Permissions |

» Permission bits: (We already spoke of these.)

P ruxrwxrwx
» The only justification | know of for learning about octal
numbers.

» To open any type of file by name requires execute (a.k.a.
search) bit access of every directory (including “."”, even
implicitly) contained in the (full) path.

» This is also necessary for seeking executables in $PATH.

» Read permission on a directory lets us read the directory (e.g.
for an “1s"), execute/search lets us open a specific file.

» Example: Setting permissions on your home directory.

File Access Permissions Il

» Read and write permissions affect open flags 0_RDONLY,
0_RDWR, and O_WRONLY.

» The 0_TRUNC flag requires (only) write permission. Logical,
right?

» To create a new file in a directory requires write and execute
permission on the directory.

» To delete a file, we also need write and execute permission on
the directory containing the file.

» We don’t need read or write permission on the file itself.

» Execute permission is needed to execute the file, which must
be a regular file.

How UIDs/GIDs Affect File Access

» If the EUID (of the process) is 0, anything goes.
» If the EUID is the file's owner,
look at user id bit for appropriate access mode

» Else if the EGID (or a supplementary GID) matches the GID
of the file,

look at the group bit for appropriate access mode.
» Else,
look at the other bit for the appropriate access mode.

Ownership of New Files (and Directories and ...)

» UID of file = EUID of process
» GID of file = EGID of process,

» unless the “set-GID" bit of the containing directory is set, in
which case it's the GID of the directory.

» This was intended to allow groups to share directory contents.
» Kind of anachronistic now.

What Can Your Process Do to a File?

access(2)
» Handy function to check accessibility.
» Note that it uses real UID and GID.

» Watch out for possible race condition with chmod(2) or
chown(2).
> Warning: It is of absolutely no use for the finddups PA.

man:access(2)
man:chmod(2)
man:chown(2)

How Can a Process Change Its Umask?

umask(2)

» (previously discussed)

man:umask(2)

How Can a Process Change a File's Protections?

chmod(2) and fchmod(2)

» This includes setting “sticky”, set-UID, and set-GID bits.
P sticky bit semantics:

> On a(n executable) file: vestigial and ignored.

» On a directory: A file contained within can be renamed or
deleted only by the owner of the file, the owner of the
directory, and (of course) root.

P> Best sticky bit example:

» the /tmp directory: Everybody can write files to it, but not
everybody should be able to rename files in or delete files from
it.

man:chmod(2)
man:fchmod(2)

Can | Change the Owner of a File?

chown(2), fchown(2), and Ichown(2)
» Can change owner and group, but -1 arguments leave that id
unchanged.
» Only root can change owner and group of a file arbitrarily.
» Figures, doesn't it?

» A file's owner can change its group to any other group he/she
belongs to.

man:chown(2)
man:fchown(2)
man:lchown(2)

How Big is This File?

Use one of the stat(2) calls.
> stat.st_size is the length of the file in bytes.

> =1 + offset of the last byte in the file

» You might use this to read a whole file into a buffer.
» There's a possible race condition. See it?

» How can you overcome it?

> stat.st_blocks is the number of blocks allocated for the file.

> stat.st_size may be less than, equal to, or greater than
stat.st_blocks * stat.st_blksize. Why?

» block allocation
» holes

man:stat(2)

How Do | Shorten a File?

truncate(2) and ftruncate(2)

> (see man page)

man:truncate(2)
man:ftruncate(2)

What is a Filesystem?

» Structure imposed by OS on any block device:

» hard disk (most often)

» CD-ROM or DVD-ROM

> USB stick

> floppy drive (remember those?)

» What are inodes? (discuss)
» Q: Where are filenames kept in the filesystem?
» Q: Where are paths kept in the filesystem?

How Do | Change the Name of a File?

rename(2)
» obvious purpose
P> atomic

» This only works if oldpath and newpath are on the same
filesystem (unlike mv(1)).

man:rename(2)
man:mv(1)

Can a File Have More Than One Name?

Yes, in two ways:
> (“hard") links
» symbolic links (“symlinks”)

(Hard) Links

Two directory entries point to the same data blocks.
» A UNIX filesystem is really a DAG (Directed Acyclic Graph).
» link(2)
» adds an entry to a directory

P> increments the inode’s count
P restrictions: regular files only, not across devices

» unlink(2)
» removes an entry from a directory
» decrements the inode's count

> Q: When is a file's data removed from the filesystem?

man:link(2)
man:unlink(2)

Symbolic Links

A directory entry refers to another file by name.

>

>
>
>

symlink(2) and readlink(2)

links to any file (directory, device, etc.) on the system
open(2) opens the linked-at file (checking its permission bits)
internal representation of a symlink:

» its data (block) only contains the name of the thing being
linked to

> stat.st_size of a symlink is strlen(linkName) + 1
(The “+ 1" is for NUL-termination.)

does not affect link count (so symlinks can be “broken™)

man:symlink(2)
man:readlink(2)
man:open(2)

What Timestamps are on a File?

Kept with the inode:
> atime (a.k.a. actime)
> last time file was accessed (but not modified)
> set by (e.g.)
> read(2) (of > 0 bytes)
> execve(2) (later)
> pipe(2) (also later)
» mtime (a.k.a. modtime)
> last time file was modified (but not accessed)
> set by (e.g.)
> write(2) (of > 0 bytes)
» mknod(2)
» truncate(2)
P ctime
P last time file status was changed
> set when inode info is modified (owner, group, etc.)

(We'll demonstrate these on a local — not Dropbox — directory.)

man:read(2)
man:execve(2)
man:pipe(2)
man:write(2)
man:mknod(2)
man:truncate(2)

How Do | Change Timestamps?

utime(2) and utimes(2)
» allow modification of atime and mtime fields
» utime(2) resolution is 1 sec.
» utimes(2) resolution is 1 usec (!).
>

utimensat(2) resolution is 1 nsec (!!).

man:utime(2)
man:utimes(2)
man:utime(2)
man:utimes(2)
man:utimensat(2)

How Do | Create and Remove Directories?

mkdir(2) and rmdir(2)

P just like shell commands

» rmdir() won't remove a non-empty directory
remove(3)

» general purpose ‘“clobber anything”

» unlink()s a file

» rmdir()s a directory

» (still won't remove a non-empty directory)

man:mkdir(2)
man:rmdir(2)
man:remove(3)

How Can | Read Data About Directory Contents?

opendir(3), readdir(3), scandir(3), seekdir(3), telldir(3),
rewinddir(3), and closedir(3)

» struct dirent

» readdir(2) vs. readdir(3)
“This is not the function you are interested in.”

» Don't use low-level (i.e. (2)) directory access functions.
(There are synonyms. Be sure to include the right header.)

man:opendir(3)
man:readdir(3)
man:scandir(3)
man:seekdir(3)
man:telldir(3)
man:rewinddir(3)
man:closedir(3)
man:readdir(2)
man:readdir(3)

What's My Current Directory and How Do | Change It?

getewd(2), chdir(2), and fchdir(2)
> (see man pages)
» This is actually an attribute of your process, not the
filesystem.

man:getcwd(2)
man:chdir(2)
man:fchdir(2)

Special Device Files

» device numbers

» major

» minor

» use macros to extract them
» stat.st_dev

» device number of a device containing a filesystem
» device number denotes the filesystem (i.e. its driver)

» stat.st_rdev

» device number of a character or block device file
» device number denotes the device itself

stat.st_dev vs. stat.st_rdev

compare

$ stat /home/bobl
and

$ stat /dev/sda2
with

$ stat -f /dev/sda2

The former tells you about the file (stat.st_dev). The latter tells
you about the filesystem. mounted on the raw device
(stat.st_rdev).

How Can | Make Sure Stuff Has Been Written to Disk?

sync(2) and fsync(2)
» No special permission required. (Why not?)

» Use with discretion: potentially time-consuming.

man:sync(2)
man:fsync(2)

	Unit 6: Files and Directories

