
Unit 5: Low-Level I/O

CptS 360 (System Programming)
Unit 5: Low-Level I/O

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 5: Low-Level I/O

Motivation

I All file and device (and some network) input/output
ultimately uses these routines.

I Most of them map one-to-one to kernel system calls.

I This is the functionality all I/O drivers have to provide.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 5: Low-Level I/O

References

I Stevens & Rago Ch. 3

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 5: Low-Level I/O

Introduction

I Recall system/utility library interface diagram.
I These all work with file descriptors (aka “fds”).

I Q: What is the C type used for a file descriptor?
I Q: What are the typical values of file descriptors?

I All processes start with 3 open file descriptors: 0, 1, and 2.
I This is a UNIX tradition.
I Q: What are they and what do they correspond to?

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 5: Low-Level I/O

open(2) and creat(2)

To get access to a file1:
I open(2)

I Opens a file for reading and/or writing.
I What it does depends on the flags argument (below).
I It can create a new file.
I It returns a file descriptor (or ?) to that file.

I creat(2)
Creates a file. It’s equivalent to calling open() with flags

set to “O CREAT|O WRONLY|O TRUNC”.

1From now on, we’ll use the term “file” to refer to anything that has a
name in the filesystem: regular files, directories, devices, sockets, FIFOs, etc.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:open(2)
man:creat(2)
man:open(2)
man:creat(2)

Unit 5: Low-Level I/O

Common open(2) Flags

I O RDONLY, O WRONLY, or O RDWR

read-only, write-only, read/write (choose one)

I O APPEND

append (always write to the end of the file)2

I O CREAT

create file if it doesn’t exist

I O EXCL

exclusive access (with O CREAT, make sure file is created by
caller)

I O TRUNC

truncate to length 0

If necessary, combine these with the “|” (the bitwise “or”
operator).

2This is especially useful for log files.
Bob Lewis WSU CptS 360 (Spring, 2022)

man:open(2)

Unit 5: Low-Level I/O

Less-Used open(2) Flags

I O NOCTTY

if opening a device, don’t make it the control tty (later)

I O NONBLOCK or O NDELAY

nonblocking open/access – caller will never wait

I O SYNC

sync (force physical disk I/O) on every call
(generally not a good idea – see why?)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:open(2)

Unit 5: Low-Level I/O

The mode Argument to open(2) and creat(2)

I Remember “ugo” for mode flags.
I Primitive (early UNIX) security notion divides the world into

three classes:
I user
I members of the user’s group
I ”other”

I mode is only used when O CREAT is one of the flags.
I It’s affected by umask(2) (below).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:open(2)
man:creat(2)
man:umask(2)

Unit 5: Low-Level I/O

mode is a mask (in octal3)

also set in
00400 user read S IRUSR S IRWXU

00200 user write S IWUSR S IRWXU

00100 user execute S IXUSR S IRWXU

00040 group read S IRGRP S IRWXG

00020 group write S IWGRP S IRWXG

00010 group execute S IXGRP S IRWXG

00004 others read S IROTH S IRWXO

00002 others write S IWOTH S IRWXO

00001 others execute S IXOTH S IRWXO

(See the demos/dn octal demo.)

3base-8. This is one of the few times this base is still used in computing.
Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 5: Low-Level I/O

umask(2)

umask(2) sets the calling process’s “file creation mask”.

I The mask argument becomes a process attribute.

I Whenever set, it affects all later open(2) (and creat(2)) calls.

I The umask bitmask says: “Turn these mode bits off, even if
the mode argument says to turn them on.”

I The mask of the created file is (mode & ~umask) where mode

is the argument to open(2) (or creat(2)).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:umask(2)
man:umask(2)
man:open(2)
man:creat(2)
man:open(2)
man:creat(2)

Unit 5: Low-Level I/O

read(2) and write(2)

These are the primary low-level I/O functions.

I read(2)
reads from a file.

I write(2)
writes to a file.

I Q: How do you know if the operation fails?

Note: In both cases, the returned value is usually equal to count,
but might not be even if the operation was successful (see the man
pages).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:read(2)
man:write(2)
man:read(2)
man:write(2)

Unit 5: Low-Level I/O

I/O and Program Efficiency

Q: What’s are the advantages of these routines over those in the
Standard I/O library (TBD)? Vice Versa?

I These are system calls: Each one asks for kernel service.

I This is “raw” I/O: There’s no buffering in user memory
(unlike Standard I/O).

I Performance could go either way.

I You have the option to do “no wait” I/O and treat these calls
like “requests”.

I You can exclusively lock regions of the file.

We’ll study this issue in an upcoming lab.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 5: Low-Level I/O

lseek(2)

lseek(2) makes the next read(2) or write(2) operation start at any
byte location in the file. This is what we call this “random access”
(cf. “RAM”).

I Q: What major application area depends on the ability to skip
around from any location to any other in a (possibly) huge
file?

I Not every “file” permits this. (Q: Name one that doesn’t.)
I Q: Can you lseek()

I standard input (fd == 0)?
I standard output (fd == 1)?

I whence should be one of:
I SEEK SET
I SEEK CUR
I SEEK END

I Take a look at lseek64(3).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:lseek(2)
man:lseek(2)
man:read(2)
man:write(2)
man:lseek64(3)

Unit 5: Low-Level I/O

close(2)

close(2) tells the OS you no longer want to access fd.

I Calling close(2) is optional, but couth. (Exception: You
usually don’t close fd’s 0, 1, or 2.)

I When your process exits, the OS will close any open files you
don’t close.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:close(2)
man:close(2)
man:close(2)

Unit 5: Low-Level I/O

File Sharing

I Two processes on the same system can open(2) and share the
same file.

I This is okay for one writer, any number of readers.

I This is not okay for > 1 writer.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:open(2)

Unit 5: Low-Level I/O

Simultaneous Operations

There are some tricky issues with multiple processes. Suppose two
processes are running at the same time.
I If they open the same file for writing and do an lseek(2) to

EOF, followed by write(2).
I Both writes succeed, but the later overwrites the earlier.

(a classic race condition)
I Solution: Both processes call open(2) with the O APPEND flag.

(Both appends work in chronological order.)

I If they both try to create the same file if the file doesn’t
already exist...
I Both calls succeed, but the earlier process’s file will vanish

when it’s closed(!)
I Solution: Both processes call open(2) with the O CREAT and

O EXCL flags.
(The earlier process succeeds. The later one fails.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:lseek(2)
man:write(2)
man:open(2)
man:open(2)

Unit 5: Low-Level I/O

dup(2) and dup2(2)

dup(2) and dup2(2) duplicate one file descriptor to another. Write
to either of them go to the same place.

I dup2(foo, bar);

closes ”bar” before dupping it

I Handy: Lets you direct two already-open files (e.g. standard
output and standard error) to the same place.

I This is how

$ myprog 2>&1 | less

paginates both myprog’s standard output and standard error.

I This is useful for interprocess communcation (later).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:dup(2)
man:dup2(2)
man:dup(2)
man:dup2(2)

Unit 5: Low-Level I/O

fcntl(2)

fcntl(2) performs miscellaneous “file control” functions:

I duplication (redundant with dup(2))

I retrieve the fd’s file descriptor flags

I modify (some of) or get the fd’s mode and flags

I exclusively lock and unlock byte ranges of the file (advisory)

I manage signals affecting fd

I set the “close on exec” flag on fd (later)

I lots of other stuff

Bob Lewis WSU CptS 360 (Spring, 2022)

man:fcntl(2)
man:fcntl(2)
man:dup(2)

Unit 5: Low-Level I/O

ioctl(2)

ioctl(2) is a “catch-all” like fcntl(2), but is more device-related to
control stuff like:

I disk labels

I device control (e.g., CD/DVD eject)

I mag tape control (e.g., setting tape density – bits per inch)

I socket (later) I/O

I terminal I/O
esp. character-at-a-time I/O (e.g. for stty(1))

Bob Lewis WSU CptS 360 (Spring, 2022)

man:ioctl(2)
man:ioctl(2)
man:fcntl(2)
man:stty(1)

Unit 5: Low-Level I/O

Summary: What’s in a Device Driver?

Supporting a new device in the kernel means writing a device driver, code for
the kernel which implements these functions (some may be trivial):

I open()

connect to the device

I read()

read data from the device, if it is capable of reading

I write()

write data to the device, if it is capable of writing

I lseek()

reposition the device, if it is capable of repositioning

I close()

disconnect from the device

I fcntl()

perform any miscellaneous file-like operations on the device

I ioctl()

perform any miscellaneous device-like operations on the device

Bob Lewis WSU CptS 360 (Spring, 2022)

	Unit 5: Low-Level I/O

