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Motivation

I All file and device (and some network) input/output
ultimately uses these routines.

I Most of them map one-to-one to kernel system calls.

I This is the functionality all I/O drivers have to provide.
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References

I Stevens & Rago Ch. 3
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Introduction

I Recall system/utility library interface diagram.
I These all work with file descriptors (aka “fds”).

I Q: What is the C type used for a file descriptor?
I Q: What are the typical values of file descriptors?

I All processes start with 3 open file descriptors: 0, 1, and 2.
I This is a UNIX tradition.
I Q: What are they and what do they correspond to?
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open(2) and creat(2)

To get access to a file1:
I open(2)

I Opens a file for reading and/or writing.
I What it does depends on the flags argument (below).
I It can create a new file.
I It returns a file descriptor (or ?) to that file.

I creat(2)
Creates a file. It’s equivalent to calling open() with flags

set to “O CREAT|O WRONLY|O TRUNC”.

1From now on, we’ll use the term “file” to refer to anything that has a
name in the filesystem: regular files, directories, devices, sockets, FIFOs, etc.
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Common open(2) Flags

I O RDONLY, O WRONLY, or O RDWR

read-only, write-only, read/write (choose one)

I O APPEND

append (always write to the end of the file)2

I O CREAT

create file if it doesn’t exist

I O EXCL

exclusive access (with O CREAT, make sure file is created by
caller)

I O TRUNC

truncate to length 0

If necessary, combine these with the “|” (the bitwise “or”
operator).

2This is especially useful for log files.
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Less-Used open(2) Flags

I O NOCTTY

if opening a device, don’t make it the control tty (later)

I O NONBLOCK or O NDELAY

nonblocking open/access – caller will never wait

I O SYNC

sync (force physical disk I/O) on every call
(generally not a good idea – see why?)
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The mode Argument to open(2) and creat(2)

I Remember “ugo” for mode flags.
I Primitive (early UNIX) security notion divides the world into

three classes:
I user
I members of the user’s group
I ”other”

I mode is only used when O CREAT is one of the flags.
I It’s affected by umask(2) (below).
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mode is a mask (in octal3)

also set in
00400 user read S IRUSR S IRWXU

00200 user write S IWUSR S IRWXU

00100 user execute S IXUSR S IRWXU

00040 group read S IRGRP S IRWXG

00020 group write S IWGRP S IRWXG

00010 group execute S IXGRP S IRWXG

00004 others read S IROTH S IRWXO

00002 others write S IWOTH S IRWXO

00001 others execute S IXOTH S IRWXO

(See the demos/dn octal demo.)

3base-8. This is one of the few times this base is still used in computing.
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umask(2)

umask(2) sets the calling process’s “file creation mask”.

I The mask argument becomes a process attribute.

I Whenever set, it affects all later open(2) (and creat(2)) calls.

I The umask bitmask says: “Turn these mode bits off, even if
the mode argument says to turn them on.”

I The mask of the created file is (mode & ~umask) where mode

is the argument to open(2) (or creat(2)).
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read(2) and write(2)

These are the primary low-level I/O functions.

I read(2)
reads from a file.

I write(2)
writes to a file.

I Q: How do you know if the operation fails?

Note: In both cases, the returned value is usually equal to count,
but might not be even if the operation was successful (see the man
pages).
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I/O and Program Efficiency

Q: What’s are the advantages of these routines over those in the
Standard I/O library (TBD)? Vice Versa?

I These are system calls: Each one asks for kernel service.

I This is “raw” I/O: There’s no buffering in user memory
(unlike Standard I/O).

I Performance could go either way.

I You have the option to do “no wait” I/O and treat these calls
like “requests”.

I You can exclusively lock regions of the file.

We’ll study this issue in an upcoming lab.
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lseek(2)

lseek(2) makes the next read(2) or write(2) operation start at any
byte location in the file. This is what we call this “random access”
(cf. “RAM”).

I Q: What major application area depends on the ability to skip
around from any location to any other in a (possibly) huge
file?

I Not every “file” permits this. (Q: Name one that doesn’t.)
I Q: Can you lseek()

I standard input (fd == 0)?
I standard output (fd == 1)?

I whence should be one of:
I SEEK SET
I SEEK CUR
I SEEK END

I Take a look at lseek64(3).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:lseek(2)
man:lseek(2)
man:read(2)
man:write(2)
man:lseek64(3)


Unit 5: Low-Level I/O

close(2)

close(2) tells the OS you no longer want to access fd.

I Calling close(2) is optional, but couth. (Exception: You
usually don’t close fd’s 0, 1, or 2.)

I When your process exits, the OS will close any open files you
don’t close.
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File Sharing

I Two processes on the same system can open(2) and share the
same file.

I This is okay for one writer, any number of readers.

I This is not okay for > 1 writer.
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Simultaneous Operations

There are some tricky issues with multiple processes. Suppose two
processes are running at the same time.
I If they open the same file for writing and do an lseek(2) to

EOF, followed by write(2).
I Both writes succeed, but the later overwrites the earlier.

(a classic race condition)
I Solution: Both processes call open(2) with the O APPEND flag.

(Both appends work in chronological order.)

I If they both try to create the same file if the file doesn’t
already exist...
I Both calls succeed, but the earlier process’s file will vanish

when it’s closed(!)
I Solution: Both processes call open(2) with the O CREAT and

O EXCL flags.
(The earlier process succeeds. The later one fails.)
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dup(2) and dup2(2)

dup(2) and dup2(2) duplicate one file descriptor to another. Write
to either of them go to the same place.

I dup2(foo, bar);

closes ”bar” before dupping it

I Handy: Lets you direct two already-open files (e.g. standard
output and standard error) to the same place.

I This is how

$ myprog 2>&1 | less

paginates both myprog’s standard output and standard error.

I This is useful for interprocess communcation (later).
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fcntl(2)

fcntl(2) performs miscellaneous “file control” functions:

I duplication (redundant with dup(2))

I retrieve the fd’s file descriptor flags

I modify (some of) or get the fd’s mode and flags

I exclusively lock and unlock byte ranges of the file (advisory)

I manage signals affecting fd

I set the “close on exec” flag on fd (later)

I lots of other stuff
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ioctl(2)

ioctl(2) is a “catch-all” like fcntl(2), but is more device-related to
control stuff like:

I disk labels

I device control (e.g., CD/DVD eject)

I mag tape control (e.g., setting tape density – bits per inch)

I socket (later) I/O

I terminal I/O
esp. character-at-a-time I/O (e.g. for stty(1))
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Summary: What’s in a Device Driver?

Supporting a new device in the kernel means writing a device driver, code for
the kernel which implements these functions (some may be trivial):

I open()

connect to the device

I read()

read data from the device, if it is capable of reading

I write()

write data to the device, if it is capable of writing

I lseek()

reposition the device, if it is capable of repositioning

I close()

disconnect from the device

I fcntl()

perform any miscellaneous file-like operations on the device

I ioctl()

perform any miscellaneous device-like operations on the device

Bob Lewis WSU CptS 360 (Spring, 2022)


	Unit 5: Low-Level I/O

