
Unit 4: Debugging

CptS 360 (System Programming)
Unit 4: Debugging

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

Motivation

I You’re probably going to spend most of your code
development time debugging.

I You need to know several different strategies to debug code.

I Debugging is part art, part detective work.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

Reference

I $ info gdb

(Be sure the gdb-doc package is installed.)

I $ info ddd

(Be sure the ddd-doc package is installed.)

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

Phases of Debugging

I testing
Does a bug exist?

I stabilization
Is the bug consistently repeatable?

I localization
What component (executable - module - function - line) is
causing the bug?

I correction
What are the possible fixes for the bug? Which one is best?

I verification
Did the fix really work?

I retrospective
Is there any other part of this program where I might have
made the same mistake?

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

Design for Debugging

I Getting a core dump

I Be sure to set

$ ulimit -c unlimited

so you can get a core dump.

I “^\” will force a core dump from a program, if core dumping
is enabled.

I “$ gcore <pid>”, where <pid> is a process id, will get a
core dump of that process.

I Use file(1) to identify core files.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:file(1)


Unit 4: Debugging

Dealing with Errors

Name some errors that your program can detect.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

How should your code indicate an error?

Alternatives:

1. Do nothing.
What will this lead to?

2. Print an error message (where?) and call exit(3). (With what
argument?)

3. Print an error message and call abort(3). (With no argument.)

4. Return an error code to its caller...

4.1 As the function return.

4.2 In a global variable.

4.3 In a pointed-at argument.

5. Raise an exception (in C? maybe...).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:exit(3)
man:abort(3)


Unit 4: Debugging

Assertions

#include <assert.h>

...

assert(n > 0);

I stops program and dumps core (for perusal by gdb(1))

I disabled by the compiler flag “-DNDEBUG”

(Study the assert.h header to see a clever example of cpp(1) use.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:gdb(1)
man:cpp(1)


Unit 4: Debugging

Simple Debugging Approaches

I Inspection: Look at the code
I Easy, when it works.

I Instrumentation
I printf() is crude, but effective
I especially when used with...

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

Scaffolding

I Traditional:
#ifndef NDEBUG

... // debug stuff here ignored if -DNDEBUG is used

#endif

assert(3) invocations are also ignored for “-DNDEBUG”.
I I like this better:

#if 0 // set to 1 to revert to old code

... // old code

#else

... // old code being debugged *or* new, improved code

#endif

Note how you can enable/disable whole blocks of code by
changing one character, or use a #define to group blocks.

These are better (and more couth) than “commenting out” code,
as comments are unnestable. They’re also easy to remove.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:assert(3)


Unit 4: Debugging

gdb(1): The GNU Debugger

I How does it work?
I Try “gdb --tui {program name}”.

I use Ctrl-L to refresh screen

I GUI wrappers:
I ddd(1)

data display debugger
I kdbg(1)

KDE version
I (others, including many IDEs)

(Run the change demo – in class only.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:gdb(1)
man:ddd(1)
man:kdbg(1)


Unit 4: Debugging

A Few Useful gdb(1) Commands

I help

I info

I run

I backtrace (or where)

I print expression

I display

I list line|function

I break line|function [condition]

I continue

I tbreak line|function [condition]

I display expression

Commands can be abbreviated to the shortest unique prefix (“b”,
“tb”, “co”, “di”, “p”, etc.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:gdb(1)


Unit 4: Debugging

Profiling

I Compile with “-pg”.

I Run program (producing “gmon.out” file).

I Use gprof(1).

Excellent measurement of where your program is spending time on
a function-by-function basis.
There are other tools (e.g. coverage tests).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:gprof(1)


Unit 4: Debugging

Tracing library calls

I strace(1)
system call tracing

I ltrace(1)
library call tracing

demo

Bob Lewis WSU CptS 360 (Spring, 2022)

man:strace(1)
man:ltrace(1)


Unit 4: Debugging

Memory Debugging

I different from a program debugger
I idea is to detect logical, but non-fatal errors:

I array bounds errors
I accessing freed heap memory
I “memory leaks”: allocated memory that nothing points to
I allocating memory (stack or heap) that is never used

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

valgrind(1)

http://valgrind.org

I pronunciation:
“val” (as in “value”) - “grind” (as in “grinned”)

I In Norse mythology, Valgrind was the main entrance to
Valhalla.
I Only those deemed worthy by the guards to the entrance are

permitted to enter.

I Based on software emulator of: X86, AMD64, ARM, ARM64,
PPC32, PPC64, S390X, or MIPS32 hardware for Linux,
Android, or Darwin OSes. (Not available for Windows, but
can be used with WSL or Wine.)

I Works like an interpreter (e.g. Java, Python), but interprets
object code, not bytecode.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)
http://valgrind.org


Unit 4: Debugging

valgrind(1) Syntax

$ valgrind --tool=toolName program args

where toolName is:
I memcheck

a heavy-weight memory checker (the default we’ll discuss
here)

I cachegrind

a cache usage profiler
I callgrind

is cachegrind with call graph production
I helgrind

a data race detector (works with threads, as do the rest)
I massif

a heap profiler
I lackey

a sample you can look at to build own tools yourself that
interact with valgrind(1) data.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)
man:valgrind(1)


Unit 4: Debugging

valgrind(1) Advantages and Disadvantages

advantages:

I checks memory usage (at bit level!)

I performs detailed profiling (including cache usage)

I has been used on systems with 25 million lines of code (!)

I works in the presence of threads

I works with compiled code (even if it’s not optimized)

I works with any language (geared towards C/C++, though)

disadvantage:

I programs are 5-100 times slower

I (so don’t use it all the time on long programs!)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)


Unit 4: Debugging

When Should You Use valgrind(1) For Error Detection?

I all the time for short programs

I in automatic testing

I especially as part of regression testing

I after big changes

I when a bug has been detected

I after a bug has been fixed

I when a bug is suspected

I before a release

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)


Unit 4: Debugging

When Can You Use valgrind(1)?

Any time, e.g.

$ valgrind ls -al

Notes:

I works on a binary – no source required

I report written to standard error

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)


Unit 4: Debugging

valgrind(1) Demos

Here are some valgrind(1) demos:

I memory leaks:
demos/d07_valgrind_mem_leak/valgrind_mem_leak.c

I invalid read/writes:
demos/d08_valgrind_inv_rw/valgrind_inv_rw.c

I uninitialized variables:
demos/d09_valgrind_uninit/valgrind_uninit.c

I bounds checking:
demos/d10_valgrind_bounds_check/valgrind_bounds_

check.c

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)
man:valgrind(1)
demos/d07_valgrind_mem_leak/valgrind_mem_leak.c
demos/d08_valgrind_inv_rw/valgrind_inv_rw.c
demos/d09_valgrind_uninit/valgrind_uninit.c
demos/d10_valgrind_bounds_check/valgrind_bounds_check.c
demos/d10_valgrind_bounds_check/valgrind_bounds_check.c


Unit 4: Debugging

Under the Hood: How Does valgrind(1) Work?

I As above, valgrind(1) is a processor emulator.
I For each byte of data (including registers), valgrind(1) adds 9

additional bits of information:
I 8 “V” (“valid”) bits for each bit in the byte.
I 1 “A” bit indicating that the address of the byte is valid.

I V-bits are checked when:
I data is used for address generation
I a control-flow decision is to be made (see below)

I A-bits are:
I set when memory is allocated
I cleared when memory is freed

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)
man:valgrind(1)
man:valgrind(1)


Unit 4: Debugging

Example: valgrind(1) Looks at Uninitialized Values

Assume that we’ve never set a value for j then run

for (i = 0; i < 10; i++)

j += a[i];

if (j == 42)

printf("Got the answer!\n");

valgrind(1) does not complain at the j increment, since the
undefinedness is not “observable” – it won’t affect your program
output – but it will complain at the if statement.
This is why you get those “uninitialized variable used in
conditional” messages from within system I/O or string calls
instead of your own code. To see why...

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)
man:valgrind(1)


Unit 4: Debugging

Why not Check Uninitialized Assignments?

Consider this code:

struct S {

int i;

char c;

} s[2];

...

s[0].i = 42;

s[0].c = ’x’;

s[1] = s[0];

I With 32-bit ints and 8-bit chars, S
structs could occupy as little as (Q: How
many?) bytes, but compilers make
structs word-aligned (see why?), so they
“pad” them to 8 bytes.

I At run time, this “padding” intent has
been lost. Uninitialized bits are
uninitialized bits.

I The assignment “s[1] = s[0];” will
then copy uninitialized bytes, but it’s okay
because those bytes probably won’t be
used in s[0] (or s[1]). If, by some hack,
they are used (in a conditional), they’ll be
detected.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 4: Debugging

cachegrind : Cache Optimization

I basic idea: On x86’s there are actually two (or three) levels of
cache:
I L1 (fastest)

I instructions
I data

I L2 (next fastest)
I unified (both instructions and data)

I cachegrind (i.e., the cachegrind option of valgrind(1)) uses
the same simulator as valgrind(1) to find out the rates of
cache hits and misses.

I It can annotate your code with them line-by-line.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:valgrind(1)
man:valgrind(1)

	Unit 4: Debugging

