
Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

CptS 360 (System Programming)
Unit 3: System Programming in C

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Motivation

I C++ is an object-oriented application language. C is a system
programming language. Code looks different.

I Using UNIX-style development tools lets you port your code
to more platforms.

I Most of these tools are command line based: GUIs aren’t very
useful when editing over ssh(1)1.

I Don’t be afraid of the command line: It is not couth to write
system programs with an IDE.

1Unless you have X11 forwarding, but let’s not go there.
Bob Lewis WSU CptS 360 (Spring, 2022)

man:ssh(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Reference

I Stevens & Rago, Ch. 3

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

C vs C++

I If you come from a C++ background, C does things a little
differently.

I All of the stuff we cover about C can be done in C++, but
that’s not always good C++ practice.

I C is a “lower level language”, but that’s the way system
programmers want it.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Memory Allocation on the Heap

I in C++, you used
I new to allocate dynamic (“heap”) memory
I delete to deallocate heap memory

I in C, you use
I malloc(3) to allocate dynamic memory

recommended syntax for N elements of type type :

type *name ;

...

name = (type *) malloc(N * sizeof(type));

type can be a base type (e.g. int, char *, etc.) or a struct.

(See the demos/dn allocarray demo.) – a macro that
makes this more intuitive

I free(3) to deallocate dynamic memory
I or we build our own memory allocation schemes

Bob Lewis WSU CptS 360 (Spring, 2022)

man:malloc(3)
man:free(3)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Data Aggregation

I In C++, we use class to combine data together to describe
the contents of an “object”.

I in C, we use struct to do much the same thing, but there
are no distinct “objects” as such.
I In C++ terms, structs are classes with all-public members

and no methods.
I We can use structs to approximate simple object-oriented

programming (as is done in the Linux kernel and as we’ll see in
the Rational lab).

I Sometimes, system programmers use structs to do their own
sort of low-level polymorphism (as we’ll see in networking).

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Compiler Errors

I In C++, compiler messages can be cryptic at times.

I In C, compiler messages are usually pretty straightforward.

In both languages, always fix the first compiler bug first. It may be
the cause of bugs that come after it.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Base Type typedefs

typedefs help make your code and your intents clearer. Here’s
one that’s already defined and used for many system calls:

typedef unsigned int size_t;

that simply says that whenever you use size t, you really mean
“unsigned int” and you intend it to be the size of something.

Used consistently, typedefs like this can make changes in type
choices very easy (e.g. pid t).

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

struct typedefs

You can also use them to make struct declarations look like type
declarations. Instead of

struct Student {

char *firstName;

char *lastName;

};

you can say

typedef struct {

char *firstName;

char *lastName;

} Student;

so that you can declare “Student thisPerson;” instead of
“struct Student thisPerson;”. (Big deal, I know, but some
system programmers like it.)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

enum typedefs

You can also use typedefs for enums:

typedef enum {

RED , GREEN , BLUE

} Color;

...

Color colorOfBook;

(gdb(1) knows about enums, typedef’d or not, and will print
symbols.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:gdb(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Boolean Expressions

I In C++,
I Boolean variables are of

type bool.
I true and false are

built-in constants.

I In C,
I There is no bool type,

but ints are typically
used.

I 0 is “false” and anything
else (but often 1) is
“true”. (This also works
in C++.)

I Especially when used for
system programs, it is not
couth to use

if (expression)

return 1;

else

return 0;

when

return expression;

does the same thing.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

I/O

I In C++, the iostream library performs input and output
using the >> and << operators.

I In C, the stdio library performs input and output with
functions like
I scanf(3)
I printf(3)
I getc(3)
I putc(3)
I fread(3)
I fwrite(3)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:scanf(3)
man:printf(3)
man:getc(3)
man:putc(3)
man:fread(3)
man:fwrite(3)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Declaring Constants

In C (or C++), you can declare a constant values as ..

a cpp(1) macro...

#define N_A 10

int a[N_A];

int main(void)

{

int i;

a[0] = 1;

a[1] = 1;

for (i=2; i<N_A; i++) {

a[i]=a[i-1]+a[i-2];

}

return 0;

}

an enum symbol...

enum { N_A = 10 };

int a[N_A];

int main(void)

{

int i;

a[0] = 1;

a[1] = 1;

for (i=2; i<N_A; i++) {

a[i]=a[i-1]+a[i-2];

}

return 0;

}

a const variable...

const int N_A = 10;

int a[N_A];

int main(void)

{

int i;

a[0] = 1;

a[1] = 1;

for (i=2; i<N_A; i++) {

a[i]=a[i-1]+a[i-2];

}

return 0;

}

(Here, it doesn’t work.)

Note the convention that constant values are in all-caps.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:cpp(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Other C++ Stuff Missing from C

These are C++ features not built in to C. You can sometimes
provide equivalents ...

I methods
Use function naming and
calling conventions?

I inheritance (esp.
multiple)
Use struct embedding,
and naming conventions?

I call-by-reference
Pass a (const) pointer.

I operator overloading
Use (inline) functions.

I templates
Use cpp(1) macros?

I namespaces
There’s no obvious way.

I smart pointersa

C pointers are C++ raw ptrs.

aunique ptr, shared ptr, weak ptr

... but they’ll probably be idiosyncratic (non-standard).

Bob Lewis WSU CptS 360 (Spring, 2022)

man:cpp(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Data Sizes Matter

System programmers need to keep track of the sizes of variables,

I Efficient space allocation can improve performance (esp.
taking advantage of caching).

I In C, the sizeof() operator returns the size of its argument
in bytes.

I Do not confuse the sizeof() operator with the strlen(3)
function.

(Run the demos/dn sizes demo.) – And understand it!

Bob Lewis WSU CptS 360 (Spring, 2022)

man:strlen(3)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

chars vs. C++ strings

I C++ has the string class.
I C uses the char type for strings.

I chars are 1-byte ints.
I You can do arithmetic and comparisons on them:

int isPassing(char grade)

{

return ’A’ <= grade && grade <= ’C’;

}

I C “strings” are NUL-terminated arrays of chars, so

char s[] = "spam";

means the same thing as

char s[] = { ’s’, ’p’, ’a’, ’m’, ’\0’ };

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

CFLAGS for the Paranoid

In this class, your code is expected to compile without warnings
using these values passed to gcc(1), usually as the CFLAGS macro
in your makefile:

-g -Wall -Wstrict-prototypes

But that’s just the start. There are lots of gcc(1) compiler flags to
control how the compiler looks for possible errors.

If you’re interested, some combinations are listed in
demos/d3_cflags/cflags.mk.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:gcc(1)
man:gcc(1)
demos/d3_cflags/cflags.mk

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

UNIX System Calls

I two kinds of (system) library:
I static
I dynamic (most system libraries are this)

I POSIX Standard
I IEEE Std. 1001.1-1989 (a.k.a. ISO/IEC 9945)
I includes commands and the API (threads, real-time, IPC, etc.)
I supported just about everywhere, except Windows,

I Interix environment subsystem (up to and including Windows
7)

I deprecated in Windows 8
I alternatives: Cygwin (separate library), MinGW (built-in)

I this class mostly concerns the API (POSIX.1[abc])

Some common POSIX programming features...

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

POSIX Error Handling

If a system call returns a negative value (usually, but not always,
-1), something went wrong. Look in the global errno for details.

I To get errno:

#include <errno.h>

I To get the string associated with errno(3):

#include <string.h>

char *strerror(int ernnum);

I To print an error string:

#include <errno.h>

void perror(const char *msg);

prints “msg : error string ” on stderr(3).

Remember: errno is set when an error occurs, but never cleared.
Bob Lewis WSU CptS 360 (Spring, 2022)

man:errno(3)
man:stderr(3)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Limits

I Q: How large should I declare an array that will hold a path?
A: Take a look at file:///usr/include/limits.h.

I Other useful quantities (to name a few):
CHAR MIN CHAR MAX UCHAR MAX

SHRT MIN SHRT MAX USHRT MAX

INT MIN INT MAX UINT MAX

LONG MIN LONG MAX ULONG MAX

Bob Lewis WSU CptS 360 (Spring, 2022)

file:///usr/include/limits.h

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

cpp(1) Feature Test Macros

Pay attention: These are sometimes required in the man(1) page
synopsis.

I GNU SOURCE

to enable non-POSIX GNU features:

#define _GNU_SOURCE

#include <whatever>

I POSIX SOURCE

to force POSIX compliance:

#define _POSIX_SOURCE

#include <whatever>

I STDC

(mainly) to create macros to avoid function prototyping,
which you shouldn’t do. You probably won’t use it, but you
might come across it.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:cpp(1)
man:man(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

glib: Don’t Reinvent the Wheel

glib (https://docs.gtk.org/glib) is a classic C utility library with many
useful functions, macros, and data structures.

I some of it is trivial, some is amazing (e.g. C objects)

I maintained by the GNOME Project, a leading free software organization

I spun off from (but still used by) gtk, the Gnome Toolkit

I very stable (started in 1998)

I works everywhere

I comparable to C++’s Boost or STL

I not to be confused with glibc (aka libc), which contains the POSIX
functions (the main focus of our course).

You are free to use glib facilities in your work for this class.

Aside: Use the above web page or browse file:///usr/share/gtk-doc/html

(file:///usr/share/gtk-doc/html/glib/index.html, for example), not

the glib man page.

Bob Lewis WSU CptS 360 (Spring, 2022)

https://docs.gtk.org/glib
file:///usr/share/gtk-doc/html
file:///usr/share/gtk-doc/html/glib/index.html

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Development Tools

I There is quite an assortment of development tools available.

I We’ll cover debugging tools in the next unit.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Getting Help

You are going to need help2. Several sources:

I manual pages
Use man(1) (or browse
https://www.kernel.org/doc/man-pages) (bookmark?)

I info(1)

I grep(1) (esp. under /usr/include)

I /usr/share/doc

I https://google.com (of course)

(Of course, there’s always the instructor.)

2Nothing personal.
Bob Lewis WSU CptS 360 (Spring, 2022)

man:man(1)
https://www.kernel.org/doc/man-pages
man:info(1)
man:grep(1)
https://google.com

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

man(1) pages

Traditional UNIX manual page sections are:
section contains

1 commands
2 system calls (most POSIX API pages)
3 general-purpose libraries (e.g. math, stdio, dbm)
4 devices
5 file formats
6 games
7 conventions and miscellany
8 system administration

To get help on these classifications, use “$ man n intro”.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:man(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

man Command Invocations

I $ man n entry

gets information on entry , optionally restricting the search to
section n

I $ whatis entry

gets a one-line description of entry

I $ apropos keyword (or $ man -k keyword)
gets one-line description of one or more pages whose
description includes keyword

I man:entry or man:entry (section)
in browser (Firefox, at least)

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

info

I emacs-like hypertext help browser.

I part of GNU

I Run “$ info” by itself to start at the top level with a list of
(all) commands.

I Run “$ info command ” for information on command .

I especially useful for compilers and make

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Installing Documentation

On Linux systems, if you want documentation on packageName ,
look for the package packageName -doc and install it.

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

grep(1)

grep(1) is a very useful tool, if you know what to grep for...

Use one of these commands

$ grep pat /usr/include/*.h

$ grep pat /usr/include/*/*.h

$ grep pat /usr/include/**/*.h

to find a #define or function prototype that matches pat . (That
last one needs you to enable the bash(1) globstar option.)

Use

$ zgrep -l pat /usr/share/man/mann /*.gz

to find some remembered phrase or keyword in a man page you
may have seen before.

Other help source: /usr/share/doc/*

Bob Lewis WSU CptS 360 (Spring, 2022)

man:grep(1)
man:bash(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

make(1)

I System programmers use make(1) to minimize compile time
and remember necessary options.

I We’ll touch on the basics.

I It is not couth to make the makefile executable.

I Good for more than just compiling.

I It helps to draw a dependency diagram to design the makefile.

(See the demos/dn make demos.)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:make(1)
man:make(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Makefile Syntax

I comments
I begin with “#” to end-of-line

I targets
I left of “:”
I may be real files or nonexistent (“phony”) goals (e.g. clean)

I dependencies
I right of “:”
I may be real files or other targets

I rules
I need to use Tab: spaces won’t do
I each line is distinct shell command, unless you use “;\” at the

end of each line

I suffix rules (advanced)
I may be built-in or user-defined

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

make(1) Macros

I definition syntax:

name =value

I usage syntax:

$(name)

I environment variables imported by default
I various macro tricks:

I new-style substitution:

OBJS=$(subst .c,.o,$(SRCS))

I old-style substitution:

OBJS=$(SRCS:.c=.o)

I nested macros:

CFLAGS=$(CFLAGS_$(ARCH))

I remember: D-R-Y

Bob Lewis WSU CptS 360 (Spring, 2022)

man:make(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Commonly-used Macros

Most systems have these automatically defined:
CC the C compiler
CFLAGS C compiler options
CPP the C++ compiler (c++(1), not cpp(1))
CPPFLAGS C++ compiler options
LD the loader (usually = $(CC))
LDFLAGS loader options
MAKE make(1) itself, with arguments (for recursive makes)

These can be overridden in the makefile or on the command line.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:c++(1)
man:cpp(1)
man:make(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

make(1) Command Line Options

-k

Don’t stop at the first error; keep going as long as
possible.

-n

Echo the required operations, but do nothing.

-f filename

Use an alternate to makefile or Makefile.

-j [# of jobs]

Run in parallel, if possible. (Really impressive on a
multicore system!)

Bob Lewis WSU CptS 360 (Spring, 2022)

man:make(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Commonly-Used Targets

(Assuming we’re using make(1) to compile stuff.)

I default (must be first target)
Compile all executables. (Okay to have several.)

I install

If you’re sure they’re working, install executables and such in
their proper place.

I clean

Get rid of easily-reconstructed temporary files.

I immaculate

In addition to clean, get rid of the executable(s).

None of these are actual file names. It’s a good practice to label
them all as “.PHONY” (see demo) so make(1) knows that.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:make(1)
man:make(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

makedepend(1)

I analyzes source files to create dependencies of its own.

I handles nested includes

I appends dependencies to the makefile (e.g. Makefile)

I “transitive closure on #include”

Bob Lewis WSU CptS 360 (Spring, 2022)

man:makedepend(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

tar(1)

I syntax

$ tar [options] file ...

I where options are
I -c

create new archive (a.k.a. “tarball”)
I -v

be verbose
I -f filename

use filename for new or old tarball name
I -x

extract output
I -z

compress/uncompress tarball with gzip(1)/gunzip(1)
I -t

list the contents of a tarball

Bob Lewis WSU CptS 360 (Spring, 2022)

man:tar(1)
man:gzip(1)
man:gunzip(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Modern Revisioning Systems

I Subversion (aka SVN)
I manages whole directory trees of files
I uses database for central repository
I allows easy renaming of files and directories

I Git
I devised by Linus Torvalds for the Linux kernel3

I project ↔ repository
I repositories often hosted on GitHub (https://www.github.com)

or GitLab (https://www.gitlab.com)
I each user gets their own copy of the whole repository
I see https://xkcd.com/1296 and https://xkcd.com/1597
I Have a GIT cheat sheet!

I Mercurial
I don’t know much about this one

3UNIX Philosophy: The best tools are the ones you build yourself.
Bob Lewis WSU CptS 360 (Spring, 2022)

https://www.github.com
https://www.gitlab.com
https://xkcd.com/1296
https://xkcd.com/1597

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Older Revisioning Systems

You may come across these:
I SCCS (Source Code Control System) (obs.)

I developed in 1970
I ported to UNIX V7 in 1973

I RCS (Revision Control System)
I developed in 1982
I still maintained by GNU
I was mostly superseded by...

I CVS (Concurrent Versions System)
I developed in 1986
I for multiple developers
I now superseded by Subversion and Git

Bob Lewis WSU CptS 360 (Spring, 2022)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

And Then There’s...

I the C preprocessor:

#if 1

// experimental code

#else

// code that you ’re replacing ,

// but want to keep around just in case

#endif

I the demos/d5_new/new script

Bob Lewis WSU CptS 360 (Spring, 2022)

demos/d5_new/new

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Text Editors

System programmers should know at least
one of these UNIX editors:
I emacs(1)

I “East Coast” (MIT) origin
I also a development environment
I programmable in Elisp
I windowed or console (“emacs -nw”)

mode

I vim(1)
I “West Coast” (UCB) origin (as vi)
I most widely-used by system

programmers
I programmable in Python
I console mode only (although there’s

gvim(1))

Or maybe
I jed(1) or jove(1)

I low-overhead
versions of
emacs(1)

I console mode
only

I gedit(1)
I Linux (Gnome)

only
I GUI mode only

I Q: Anyone want
to plug their
favorite editor?

Bob Lewis WSU CptS 360 (Spring, 2022)

man:emacs(1)
man:vim(1)
man:gvim(1)
man:jed(1)
man:jove(1)
man:emacs(1)
man:gedit(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

Document Processing

System programmers produce documentation. Popular choices:

I nroff(1), groff(1), and troff(1)

I easy to figure out
I outdated for regular

documents, but...
I still used for man pages

I Microsoft Word

I if you absolutely must

I LibreOffice or OpenOffice

I WYSIWYG, mostly
I OpenDoc format

(.od[bgmpst]) easy to
analyze (zipped XML
archive) and generate.

I LATEX

I a pain to learn, but...
I worth the effort, esp. for

professional publications
I best book (IMHO): Kopka

& Daley’s Guide to LATEX

I ReST (ReStructured Text)

I intuitive
I uses readable ASCII files
I generates HTML, LATEX,

XML, and PDF slides
from the same input

I can insert LATEX if needed

Bob Lewis WSU CptS 360 (Spring, 2022)

man:nroff(1)
man:groff(1)
man:troff(1)

Unit 3: System Programming in C
C vs C++
Other Useful C Constructs
Development Tools

IDEs: Integrated Development Environments

If you really need one:

I Eclipse

I runs ∼everywhere

I Visual Studio

I runs ∼everywhere

I Qt Creator

I C++ only
I runs ∼everywhere
I uses Qt4 GUI

framework (with
Qt Designer)

I kdevelop(1)

I Linux (KDE) only

I kate(1)

I Linux only

I XCode

I MacOS only

I Code::Blocks

I runs ∼everywhere
I uses wxWidgets GUI framework

Most of these support multiple languages/file formats.
Any others you’d like to plug?

Bob Lewis WSU CptS 360 (Spring, 2022)

man:kdevelop(1)
man:kate(1)

	Unit 3: System Programming in C
	C vs C++
	Other Useful C Constructs
	Development Tools

