
CptS 360 (System Programming), Spring, 2022 1

Programming Assignment #3 Due: 3/29

1. [100 points] Using what you know about process relationships, process control, and
file and directory operations, write a function snapshot() as described in the attached
”man” page (q.v.).

This function is intended for incorporation in a program you send to a (human) client.
The idea is that at any point in its execution, your program can call snapshot() to
create a compressed tarball (a ”snapshot”) containing a core dump, a matching exe-
cutable, and a README.txt file containing a message from the program. The snapshot
is suitable for attaching to a bug report to be sent to the developer for debugging.

You will find source for test program for snapshot() in the snapshot t0.tgz tarball
available from the web page, along with a Makefile and header files. Un-tar this into
a clean directory, add your own snapshot.c containing the function, and make will
compile and link a simple test program, snapshot t0, that produces a snapshot whose
name (i.e., ssname) is given on the command line.

Notes:

• Although you might think you could copy your program’s executable by opening
and copying argv[0], this is not reliable. Instead, make use of the fact that
on Linux systems there’s a symlink for a process’s executable in /proc/pid /exe

where pid is the process ID. Open that link and copy it to a file.

• snapshot() should fail if the snapshot directory already exists. (It assumes it’s
not the result of a snapshot() call so it avoids trashing it.)

• snapshot() should overwrite any existing identically-named tarball. (It assumes
that it’s the result of a previous execution and that the user wants to update it.)

• Use setrlimit(2) to allow an unlimited core dump size. (As a good developer, you
should have set “$ ulimit -c unlimited”, but your client might not.)

• snapshot() does not call exit(3). The same process may call snapshot() at
several different points (possibly with different ssnames) and the process will
continue to run.

• Use OS calls and utility functions (i.e. manual sections 2 and 3) to do most of
the work – Don’t try to do everything from scratch! Requirement: You may use
system(3) to invoke tar(1), but you may not invoke any other system executables.

• Your tarball should include a makefile that will make snapshot t0. Do not modify
snapshot t0.c in any way.

• The instructor will test your code with a different program than snapshot t0.
That program will “#include” snapshot.h (which you are not to modify) and
compile and link in your snapshot.c.

man:setrlimit(2)
man:exit(3)
man:system(3)
man:tar(1)

CptS 360 (System Programming), Spring, 2022 2

SNAPSHOT(3) CptS 360 SNAPSHOT(3)

NAME

snapshot - generate a ”snapshot” tarball of a running program suitable for debugging

SYNOPSIS

#include "snapshot.h"

int snapshot(char *ssname, char *progpath, char *readme);

DESCRIPTION

When snapshot() is called from a running program, it creates a gzip(1)-compressed
tarball containing a copy of that program’s executable, a core file, and a README.txt

text file.

ssname is the name of a directory that will be temporarily created (if the calling
process has permission to do so) that will hold those files. The name of the tarball is
ssname .tgz and it holds a directory named ssname whose contents are:

• progname : An executable copy of the binary code for the currently-running exe-
cutable. progname is progpath without any directory information. (hint: base-
name(3)) For this to work, progpath should usually be argv[0], where argv is
the first argument to main().

• core: A core dump of the current program made by snapshot.

• README.txt: A file containing the contents (and only the contents) of the readme
string. If readme does not end in a newline, it will be added to this file.

ssname and its contents will be deleted after the tarball is created.

EXAMPLE

A program foo calling

snapshot("snap_1", argv[0], "This is where I think the problem is.");

will create a gzipped tar file snap 1.tgz. If you look at this file from the shell, you
will find:

$ tar -tzf snap_1.tgz

snap_1/foo

snap_1/core

snap_1/README.txt

man:gzip(1)
man:basename(3)
man:basename(3)

CptS 360 (System Programming), Spring, 2022 3

If you then un-tar the contents and cd to the snap 1 directory, you will be able to run

$ gdb foo core

and examine variables as usual. If you examine the contents of README.txt you get:

$ cat README.txt

This is where I think the problem is.

ERRORS

If snapshot() fails for any reason, it returns -1. Otherwise, it returns 0. If any of the
system routines it calls sets errno, that value is unchanged.

