
Lab 3: Experiments with Low-Level I/O
This lab will show you how to use the raw I/O routines to investigate the effect of buffer size on the speed of
execution. It will answer the question: "When copying files, is there an optimal value for the buffer size?" This
is an example of "Computer Science as a lab science."

This page will be available as

http://www.tricity.wsu.edu/~bobl/cpts360/lab03_raw_io/writeup.html

It's also linked via lab link on the course web page.

Part 1: Building raw_copy
The first step is to create a program raw_copy that will copy one file to another much like cp(1), but will do
so using raw I/O with a user-specified buffer size for each read(2) call. Its command line syntax is

$./raw_copy bufferSize inputFilename outputFilename

Here is the pseudocode:

compute the buffer size from argv[] (hint: atoi(3))
allocate a buffer of the given size bytes (hint: malloc(3))
open the input file read-only (hint: open(2))
open the output file write-only and with "truncate" and "create"
 flags set, making sure that permissions permit writing (hint: open(2))
loop:
 attempt to read the given size bytes from the input file into
 the buffer (hint: read(2))
 if zero bytes were read,
 exit the loop (we're done reading)
 write however many bytes were read from the buffer to the output file (hint: write(2))
free the buffer (hint: free(3))
close the input file (hint: close(2))
close the output file (hint: close(2))

Write a makefile to compile and link raw_copy.

Notes:

• You don't need to create a separate function: raw_copy can do everything in main().

• All system calls should check for errors. Feel free to use the SYSCALL_CHECK() macro by downloading
and #include-ing syscall_check.h from the lab web page. Instructions are at the beginning of the
file.

• Also feel free to use ALLOC_ARRAY() and the related macros in allocarray.h.

• The result of read(2) is the number of bytes read, which may be smaller than the buffer size.

• Remember to use valgrind(1) to check for leaks. The grader will.

Run tests to make sure your program works. A good, large, test file is one of the /boot/initrd.img* files,
which is big (about 40MB), readable by everybody, and present on every Linux system. A good test command
should be:

$./raw_copy bufferSize initrdFile tmp_file

WSU Tri-Cities CptS 360 (Spring, 2022)

page 1 of 2

http://www.tricity.wsu.edu/~bobl/cpts360/lab03_raw_io/writeup.html

To check that raw_copy is working properly, run:

$ cmp initrdFile tmp_file

If the files are identical, there will be no output.

Part 2: Experiments
Working on the command line, use the time shell builtin (run "$ help time" for details) to measure elapsed
("real"), user, and system ("sys") time. (This program does mostly I/O, so most of its CPU time will be spent in
system mode.) Collect data by varying the buffer size from 1 to 16384 by powers of 2 (i.e., 1, 2, 4, 8, 16, ...).
How does varying the size of the buffer affect the amount of elapsed, user, and system time your program
requires to copy the same data?

There's a script plot_log_log downloadable from the lab directory that takes data from an ASCII file
(argument) with x (buffer size) and y (time) values on each line and plots them with a log-log plot. (The file
example.txt is an example.) You need the gnuplot package installed and an X11 server. (MobaXTerm to
elec might work for this.)

If these experiments are done properly, there are trends in the data you will be expected to notice and
describe. Put that description in a README.txt file included in your submission tarball.

Submission
Put the source file, Makefile, and README.txt in a tarball and submit it via Blackboard.

WSU Tri-Cities CptS 360 (Spring, 2022)

page 2 of 2

	Part 1: Building raw_copy
	Part 2: Experiments
	Submission

