Microsoft Research

Each year Microsoft Research hosts hundreds of
influential speakers from around the world
Including leading scientists, renowned experts in
technology, book authors, and leading academics,
and makes videos of these lectures freely available.
2016 © Microsoft Corporation. All ights reserved.

The gate quantum computation model

O Quantum supremacy expected this year

O Microsoft, Google, Intel, IBM all investing in quantum computer development

O Several exciting applications already known

O Efficiently factor large composite numbers, breaking RSA encryption (Shor's algorithm, 1994)
O Search an unordered list in O(y/n) time (Grover's algorithm, 1996)
O Believed exponential speedup in simulating quantum mechanical systems

O Intellectudlly interesting — quantum mechanics is outside your intuition!

O Get asmall glimpse of what you don't know you don’'t know

O Representing computation with basic linear algebra (vectors and matrices)

O Qbits, superposition, and quantum logic gates
O The simplest problem where a quantum computer beats a classical computer

O Bonus topics: quantum entanglement and teleportation

One bit with the value 0, also written as |0) (Dirac vector notation)

1L

0

One bit with the value 1, also written as |1)

0
1l

_ [ax + by
~ \cx+dy

ax + by + cz
): dx+ey+ [z
gx + hy +iz

w x)_(aw+by ax-l-bz)

y Z cw+dy cx+dz

Identity filx) = %

Negation f(x) = x <

Constant-0 flix) =0

Constant-1 fitx) =1

O Reversible means given the operation and output value, you can find the input value

O For Ax = b, given b and A, you can uniquely find x

O Operations which permute are reversible; operations which erase & overwrite are not
O Identity and Negation are reversible

O Constant-0 and Constant-1 are not reversible

O Quantum computers use only reversible operations, so we will only care about those

O In fact, all guantum operators are their own inverses

Identity filx) = %

Negation f(x) = x <

Constant-0 flix) =0

Constant-1 fitx) =1

O Reversible means given the operation and output value, you can find the input value

O For Ax = b, given b and A, you can uniquely find x

O Operations which permute are reversible; operations which erase & overwrite are not
O Identity and Negation are reversible

O Constant-0 and Constant-1 are not reversible

O Quantum computers use only reversible operations, so we will only care about those

O In fact, all guantum operators are their own inverses

Identity filx) = %

Negation f(x) = x <

Constant-0 flix) =0

Constant-1 fitx) =1

O Reversible means given the operation and output value, you can find the input value

O For Ax = b, given b and A, you can uniquely find x

O Operations which permute are reversible; operations which erase & overwrite are not
O Identity and Negation are reversible

O Constant-0 and Constant-1 are not reversible

O Quantum computers use only reversible operations, so we will only care about those

O In fact, all guantum operators are their own inverses

9 =1100)= ;) &

0-()o()-(f) - ()a)-

O We call this tensored representation the product state

O We can factor the product state back into the individual state representation
O The product state of n bits is a vector of size 2™

O Operates on pairs of bits, one of which is the “control” bit and the other the “target” bit
O If the control bitis 1, then the target bit is flipped
O If the control bit is O, then the target bit is unchanged

O The control bit is always unchanged

O With most-significant bit as control and Ieos'r-significgl’r bit as target, action is as follows:

00 — » 00
0le —— »01

10% *10

11» ><011

O We represent classical bits in vector form as () for 0 and (3) for 1

O Operations on bits are represented by matrix multiplication on bit vectors
O Quantum computers only use reversible operations
O Multi-bit states are written as the tensor product of single-bit vectors

O The CNOT gate is a fundamental building block of reversible computing

O Surprise! We've actually been using gbits all along!

O The cbit vectors we've been using are just special cases of gbit vectors
O A gbit is represented by (g) where a and b are Complex numbers and ||al|? + ||b]|? = 1

O The cbit vectors (i) and (3) fit within this definition

O Don't worry! For this presentation, we'll only use familiar Real numbers.

O Example gbit values:

1
2

V3
2

O How can a gbit fo have a value which is not O or 12 This is called superposition.
O Superposition means the gbit is both 0 and 1 and the same time

O When we measure the gbit, it collapses to an actual value of O or 1

O We usuadlly do this at the end of a quantum computation to get the result

O If a gbit has value () then it collapses to 0 with probability [|al|> and 1 with probability ||b]|2

1

2
O For example, gbit (‘?) has a ”%” = 2 chance of collapsing fca) or 1 (coin flip)

V2

O The gbit () has a 100% chance of collapsing to 0, and () has a 100% chance of collapsing to 1

O Multiple gbits are similarly represented by the tensor product (7)) ® (5) =

O Note that ||lac||? + ||ad]||? + ||bc||? + ||bd]|? = 1

1|2 1 Ll SE
O For example, the system = (note that "5" == and AU 1)

\¥

O There's a 4 chance each of collapsing to |00),|01),|10), or |11)

O How do we operate on gbits¢ The same way we operate on cbits: with matrices!
O All the matrix operators we've seen also work on gbits (bit flip, CNOT, etc.)

O Matrix operators model the effect of some device which manipulates gbit
spin/polarization without measuring and collapsing it

O There are several important matrix operators which only make sense in a quantum context

O Multiple gbits are similarly represented by the tensor product (7)) ® (5) =

O Note that ||ac||? + ||lad||* + ||bc||* + ||bd]||* = 1

12 1 bl s
O For example, the system = (note that “5” = and AU 1)

\}

O There's a 4 chance each of collapsing to |00),|01),|10), or |11)

O How do we operate on gbits¢ The same way we operate on cbits: with matrices!
O All the matrix operators we've seen also work on gbits (bit flip, CNOT, etc.)

O Matrix operators model the effect of some device which manipulates gbit
spin/polarization without measuring and collapsing it

O There are several important matrix operators which only make sense in a quantum context

O The Hadamard gate takes a 0- or 1-bit and puts it info exactly equal superposition

1 1 1 1 1 1
= i i 1
V2

7) 7 7/

O The Hadamard gate also takes a gbit in exactly-equal superposition, and transforms it into
a 0- or 1-bit! (This should be unsurprising — remember operations are their own inversel)

/1 1\L /1 1\
V2 V2 |[V2 V2 2
181N 1

\\/17 _/i/ V2 \vz \—/:7:/

O We can transition out of superposition without measurement!

O We can thus structure quantum computation deterministically instead of probabilistically

Cbits are just a special case of gbits, which are 2-vectors of Complex numbers

Qbits can be in superposition, and are probabilistically collapsed to cbits by measurement

Multi-gbit systems are tensor products of single-gbit systems, like with cbits

Matrices represent operations on gbits, same as with cbits
The Hadamard gate takes 0- and 1-bits to equal superposition, and back

We can think of gbits and their operations as forming a state machine on the unit circle

O Actually the unit sphere if we use complex numbers

O Imagine someone gives you a black box containing a function on one bit

O Recalll What are the four possible functions on one bit?

O You don't know which function is inside the box, but can try inputs and see outputs

O How many queries would it tfake to determine the function on a classical computere

O How many on a quantum computer?

O What if you want to check whether the unknown function is constant, or variable?

O Constant-0 & constant-1 are constant, identity & negation are variable

O How many queries would it take on a classical computer?

O How many on a qguantum computer?

O How can it be done in a single query!?

O We can do it with the magic of superposition!

O First, we have to define what each of the four functions look like on a quantum computer

O We have an immediate problem with the constant functions

O How do we write nonreversible functions in a reversible way?
O Common hack: add an additional output gbit o which the function action is applied

O We thus have to rewire our black box:

Before: After:

|X) Output 10 f(lx))’ Output’

Input 1) IX)
Input * Input’

O The black box leaves the input gbit unchanged, writing function output to output gbit

O How do we write nonreversible functions in a reversible way?
O Common hack: add an additional output gbit o which the function action is applied

O We thus have to rewire our black box:

Before: After:

Ix) Output 0) f(|x))’ Output’

Input 1) IX)
Input * Input’

O The black box leaves the input gbit unchanged, writing function output to output gbit

O How do we solve it on a guantum computer in one query?¢

0)

Output b X I

Input

O If the black-box function is constant, system will be in state |11) after measurement

O If the black-box function is variable, system will be in state |01) after measurement

O We did itl We determined whether the function was constant or variable in a single query!

O Intuition: the difference within the categories (negation) was neutralized, while the
difference between the categories (CNOT) was magnified

O This problem seems pretty contrived (and it was, when it was published)

O A generdlized version with an n-bit black box also exists (Deutsch-Josza problem)

O Determine whether the function returns the same value for all 2™ inputs (i.e. is constant)

O A variant of the generalized version was an inspiration for Shor's algorithm!

O We did itl We determined whether the function was constant or variable in a single query!

O Intuition: the difference wifhin%e categories (negation) was neutralized, while the

difference between the categories (CNOT) was magnified
O This problem seems pretty contrived (and it was, when it was published)

O A generdlized version with an n-bit black box also exists (Deutsch-Josza problem)

O Determine whether the function returns the same value for all 2™ inputs (i.e. is constant)

O A variant of the generalized version was an inspiration for Shor's algorithm!

earned how to model classical computation with basic linear algebra

earned about gbits, superposition, and the Hadamard gate

earned the Deutsch Oracle problem, where quantum outperforms classical

O Quantum entanglement

O Quantum teleportation

O If the product state of two gbits cannot be factored, they are said to be entangled

2 c

1
V2
0
0

0

1 |
\Vz/ 7
O The system of equations has no solution, so we cannot factor the quantum state!

O This has a 50% chance of collapsing to |00) and 50% chance of collapsing to [11)

How can we reach an entangled state¢ Easy!

10) ;
\\

10)

O If the product state of two gbits cannot be factored, they are said to be entangled

2 c

1
V2
0
0

0

1 |
\Vz/ 7
O The system of equations has no solution, so we cannot factor the quantum state!

O This has a 50% chance of collapsing to |00) and 50% chance of collapsing to [11)

How can we reach an entangled state¢ Easy!

10)

AR
L/

10)

O What's going on here¢ The gbits seem to be coordinating in some way
O Measuring one gbit also collapses the other in a correlated state
O This coordination happens even across vast strefches of space

O The coordination even happens faster than the speed of light! It is instantaneous.

O A 2013 experiment measured particles within 0.01% of the travel fime of light between them

O Surely the gbits “decided"” at the time of entanglement what they would do?

O Nol! This is called “hidden variable” theory and was disproved by John Bell in 1964

O This does indeed break locality through faster-than-light coordination

O However — and this is the critical part — no information can be communicated

O Quantum teleportation is the process by which the state of an arbitrary gbit is fransferred

from one location to another by way of two other entangled gbits

O You can transfer gbit states (cut & paste) but you cannot clone them (copy & paste)
O This is called the No-cloning theorem

O The teleportation is not faster-than-light, because some classical information must be sent

Deutsch-Jozsa algorithm and Simon's periodicity problem
O Former yields oracle separation between EQP and P, latter between BQP and BPP

Shor's algorithm and Grover's algorithm

Quantum cryptographic key exchange
How qgbits, gates, and measurement are actually implemented
Quantum error correction

Quantum programming language design

O If the product state of two gbits cannot be factored, they are said to be entangled

1

1
/75\ c ﬁ
) 0
0

0
1 |
\Vz/ 7

O The system of equations has no solution, so we cannot factor the quantum state!

O This has a 50% chance of collapsing to |00) and 50% chance of collapsing to [11)

Deutsch-Jozsa algorithm and Simon's periodicity problem
O Former yields oracle separation between EQP and P, latter between BQP and BPP

Shor's algorithm and Grover's algorithm

Quantum cryptographic key exchange
How qgbits, gates, and measurement are actually implemented
Quantum error correction

Quantum programming language design

O Recommended textbook: Quantum Computing for Computer Scientists
O Others have recommended Quantum Computing: A Gentle Infroduction

O For those with heavier math backgrounds, Quantum Computer Science: An Infroduction

O The Microsoft Quantum Development Kit docs are nice [link]

O The development kit contains a quantum computer simulator!
O Exercise: implement the Deutsch Oracle tester in Q#
O Some skepticism about physically-realizable quantum computers [link]

O Noise might increase exponentially with the number of physical gbits

O Single-bit operations on multi-bit states

O Quantum teleportation math

‘2' DeutschOracle - Microsoft Visual Studio X' & | Quick Launch (Ctrl+Q Pl = B X
File Edit View Project Build Debug Team Tools Test Analyze Window Help Andrew Helwer ~ x

o - "od.c’ HHH‘ - >

Debug =~ AnyCPU *~ P Start " _ilkg | ‘ a

Driver.cs DeutschOracle.gs + X RUETGELIEH
X(output);

RE~- -S| o p

'
olution kxplore

sjoo] msoubel

% Solution ‘DeutschOracle’ (1 project)

operation IsBlackBoxConstant(blackBox: ((Qubit, Qubit) => ())) : (Bool) 4 | DeutschOracle
{ b M Properties
body I b =B References
{ [) BlackBox.qs
mutable inputResult = Zero; [} DeutschOrade.qs
mutable outputResult = Zero; b c* Drivercs
¥.) packages.config
// Allocate two gbits
using (gbits = Qubit[2])
{
// Label gbits as inputs and outputs
let input = qbits[@];

: Solution Explorer Expl
let output = gbits[1]; P eam Explorer

r
Properties

// Set gqbits to zero in preparation
Clear(input, output);

// Pre-processing
X(input);
X(output);
H(input);
H(output);

// Send gbits into black box
blackBox(input, output);

* Add to Source Control ~

p 11:52 AM
Y 2/14/2018

B < [IBM Qexperience X | 4+ v . . ¢

O @ O hi quantumexperience.ng.bluemix.net *‘f(j"s Z\, @

IBMQ ’ Home Composer Devices Community GitHub Andrew Helwer

> Backend: ibmgx4 (5 Qubits)

> Backend: ibmgx2 (5 Qubits)

New experiment N New Save Save as
<> | Switch to Qasm Editor Backend: ibmgx4 @ My Units: 15@ Experiment Units: 3 @ m 2o m Te
GATES © (] i
q[0])
al1] S A T -
al2] | | ! | W
ql4] |
BARRIER OPERATIONS
i .—
G s -
0 ' light

11:54 AM

7

@ 211402018

B < [IBM Q experience X | 4 v il 5 %

O @ (] ht quantumexperience.ng.bluemix.net ‘ﬁ{){‘E Z\, LQ

New experiment New Save Save as
<> | Switch to Qasm Editor Backend: iIbmgx4 @ My Units: 15@ Experiment Units: 3 @ “ > m =
GATES @ [] Advanced
al0] i
Q[1] () | £ s AT
al2] |g i
al3] i)
ql4] |
BARRIER OPERATIONS
;
¢ () ; :
K
Quantum Scores Refresh e

11:54 AM

2/14/2018

B < [IBM Qexperience X | 4+ v . . %

é O GD - quantumexperience.ng.bluemix.net ‘ﬁ{ ‘){\E Z\, @

Experiment #20180214115601 Add a deccrintian New Save Save as

I'he execution 1s planned and it'll be the next
0 11 B i] U ! } ;"'1 y "] " “‘,‘ 1he l s) A i AAMRIGPRIAIRINI RS
¢> | Switch to Qasm Editor Ba simulate feature in the meantime! E Run I -
B i nuRsEE N NRRRE] '
A GATES © [Advanced
ql0] |
a[1] | —— (0 e £ oo
al2] o) & e |
ql3] |y
ql4] |
BARRIER OPERATIONS
-
a1 ¥ -

Quantum Scores Refresh

11:56 AM

2/14/2018

B < [IBM Qexperience X | 4+ v w . %

<— O @] ht quantumexperience.ng.bluemix.net ‘;f{ 'fE Z\, @

Quantum Scores (1 scores) Refresh Remove All

v Experiment #20180214115601 Add a description n

Executions

alo]

L*r~n1¢;Mi82ksm14Am @

I

al1]

q2] 1

ql3]

Ql4] 1y

IBM Q experience License Agreement

11:56 AM

7,

@ 211402018

B < [IBM Q experience X | 4 v = . V.

<— O @] ht quantumexperience.ng.bluemix.net ‘f:{ ‘i,"E Z\, L,‘:)
!
i
R x x :
Quantum Scores (1 scores) Refresh Remove All
v Experiment #20180214115601 Add a description u-n
Executions
0] 1y (e
" Feb 14, 2018 11:56:14 AM) m
al1] ’7”\
al2] o)
al3] |y
al4l

N

11:59 AM
2/14/2018

7

(/B

B G:'-JI '] 1BM Q experience X \ 4+ v

é = O GD) hitps //quantumexperience.ng.bluemix.net/ v/ editor 7co

Confirm your execution (shots: 1024)

We found a result of the same code executed recently on the device. Would you like to get
this result? Otherwise, a new execution will be planned.

Result from{Mache New Execution

in its Fr Run a New Execution (3 Units)

Cancel OK

https:.//quantumexperience.ng.bluemix.net/qx/editor?codeld =0a2fd57dce00e118b5f0d2b8105f9bff

a . > : , 12:01PM

2/14/2018

B < [1BM Qexperience X | 4+ v

<— ~7 O Gh) hitps //quantumexperience.ng.bluemix.net/

&) Experiment #20180214115601

Qdantum State: Computation Basis

0.055

Quantum Circuit

Qo) i

ql1) A
q[2} w..“ @

QL3

I

Download CSV

OPENQASM 2.0

"gelibl.inc";

12:01 PM
2/14/2018

