
Chapter 7 <1>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

Digital Design and Computer Architecture, 2nd Edition

Chapter 7

David Money Harris and Sarah L. Harris

Chapter 7 <2>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E Chapter 7 :: Topics

• Introduction (done)

• Performance Analysis (done)

• Single-Cycle Processor (done)

• Multicycle Processor (done)

• Pipelined Processor (done)

• Exceptions (done)

• Advanced Microarchitecture
(now)

Chapter 7 <3>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Deep Pipelining

• Branch Prediction

• Superscalar Processors

• Out of Order Processors

• Register Renaming

• SIMD

• Multithreading

• Multiprocessors

Advanced Microarchitecture

Chapter 7 <4>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• 10-20 stages typical

• Number of stages limited by:
– Pipeline hazards

– Sequencing overhead

– Power

– Cost

Deep Pipelining

Chapter 7 <5>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Ideal pipelined processor: CPI = 1

• Branch misprediction increases CPI

• Static branch prediction:
– Check direction of branch (forward or backward)

– If backward, predict taken

– Else, predict not taken

• Dynamic branch prediction:
– Keep history of last (several hundred) branches in branch target

buffer, record:
• Branch destination

• Whether branch was taken

Branch Prediction

Chapter 7 <6>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

 add $s1, $0, $0 # sum = 0
 add $s0, $0, $0 # i = 0
 addi $t0, $0, 10 # $t0 = 10
for:
 beq $s0, $t0, done # if i == 10, branch
 add $s1, $s1, $s0 # sum = sum + i
 addi $s0, $s0, 1 # increment i
 j for
done:

Branch Prediction Example

Chapter 7 <7>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Remembers whether branch was taken the
last time and does the same thing

• Mispredicts first and last branch of loop

• If the loop is entered again, the "taken" is
incorrect.

1-Bit Branch Predictor

Chapter 7 <8>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

● When loop is exited, "strongly not taken" state
transitions to "weakly not taken".

● If loop is entered again, it correclty predicts
"taken" and the state returns to "strongly not
taken".

● Only mispredicts last branch of loop

2-Bit Branch Predictor

strongly
taken

predict
taken

weakly
taken

predict
taken

weakly
not taken

predict
not taken

strongly
not taken

predict
not taken

taken taken taken

takentakentaken

taken

taken

Chapter 7 <9>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Multiple copies of datapath execute multiple
instructions at once

• Dependencies make it tricky to issue multiple
instructions at once

Superscalar

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction
Memory

Register
File Data

Memory

A
LU

s

PC

CLK

A1
A2

WD1
WD2

RD1
RD2

Chapter 7 <10>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E Superscalar Example with No Dependencies

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DM
IM

sub

and $t3
$s4

$s3

&

RF
$s5

$s1

RF

$t4
|

DM
IM

or

sw
80

$s0

+ $s5

lw $t0, 40($s0)
add $t1, $s1, $s2
sub $t2, $s1, $s3 Ideal IPC: 2

and $t3, $s3, $s4 Actual IPC: 2

or $t4, $s1, $s5
sw $s5, 80($s0)

Chapter 7 <11>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3 Ideal IPC: 2

and $t2, $s4, $t0 Actual IPC: 6/5 = 1.17

or $t3, $s5, $s6
sw $s7, 80($t3)

Superscalar Example with Dependencies

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

RF
$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DM
IM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM

sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

oror $t3, $s5, $s6

IM

Chapter 7 <12>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E
• Looks ahead across multiple instructions

• Issues as many instructions as possible at once

• Issues instructions out of order (as long as no
dependencies)

• Dependencies:
– RAW (read after write): one instruction writes, later

instruction reads a register

– WAR (write after read): one instruction reads, later
instruction writes a register

– WAW (write after write): one instruction writes, later
instruction writes a register

Out of Order Processor

Chapter 7 <13>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Instruction level parallelism (ILP): number
of instruction that can be issued
simultaneously (average < 3)

• Scoreboard: table that keeps track of:

– Instructions waiting to issue

– Available functional units

– Dependencies

Out of Order Processor

Chapter 7 <14>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E
lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3 Ideal IPC: 2

and $t2, $s4, $t0 Actual IPC: 6/4 = 1.5

or $t3, $s5, $s6
sw $s7, 80($t3)

Out of Order Processor Example

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DM
IM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

or
|$s6

$s5
$t3

RF
80

$t3

RF
+

DM

sw $s7

or $t3, $s5, $s6

IM

RF
$s1

$t0

RF

$t1
+

DM
IM

add

sub
-$s3

$s2
$t0

two cycle latency
between load and
use of $t0

RAW

WAR

RAW

RF
$t0

$s4

RF
&

DM

and

IM

$t2

RAW

Chapter 7 <15>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3 Ideal IPC: 2

and $t2, $s4, $t0 Actual IPC: 6/3 = 2

or $t3, $s5, $s6
sw $s7, 80($t3)

Register Renaming

Time (cycles)

1 2 3 4 5 6 7

RF
40

$s0

RF

$t0
+

DM
IM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $r0, $s2, $s3

and $t2, $s4, $r0

sw $s7, 80($t3)

sub
-$s3

$s2
$r0

RF
$r0

$s4

RF
&

DM

and

$s7

or $t3, $s5, $s6
IM

RF
$s1

$t0

RF

$t1
+

DM
IM

add

sw
+80

$t3

RAW

$s6

$s5
|

or

2-cycle RAW

RAW

$t2

$t3

Chapter 7 <16>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Single Instruction Multiple Data (SIMD)
– Single instruction acts on multiple pieces of data at once

– Common application: graphics

– Perform short arithmetic operations (also called packed
arithmetic)

• For example, add four 8-bit elements

SIMD

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

31

Chapter 7 <17>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Multithreading
– Wordprocessor: thread for typing, spell checking,

printing

• Multiprocessors
– Multiple processors (cores) on a single chip

Advanced Architecture Techniques

Chapter 7 <18>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Process: program running on a computer
– Multiple processes can run at once: e.g., surfing

Web, playing music, writing a paper

• Thread: part of a program
– Each process has multiple threads: e.g., a word

processor may have threads for typing (perhaps
for multiple collaborators), spell checking,
printing

Threading: Definitions

Chapter 7 <19>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• One thread runs at once

• When one thread stalls (for example, waiting
for memory):
– Architectural state of that thread stored

– Architectural state of waiting thread loaded into
processor and it runs

– Called context switching

• Appears to user like all threads running
simultaneously

Threads in Conventional Processor

Chapter 7 <20>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Multiple copies of architectural state

• Multiple threads active at once:
– When one thread stalls, another runs immediately

– If one thread can’t keep all execution units busy,
another thread can use them

• Does not increase instruction-level parallelism
(ILP) of single thread, but increases
throughput

Intel calls this “hyperthreading”

Multithreading

Chapter 7 <21>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Multiple processors (cores) with a method of
communication between them

• Types:
– Homogeneous: multiple cores with shared memory

– Heterogeneous: separate cores for different tasks
(for example, DSP, GPU, and CPU in cell phone)

– Clusters: each core has own memory system

Multiprocessors

Chapter 7

Multicores,
Multiprocessors, and
Clusters

Introduction
 Goal: connecting multiple computers

to get higher performance
 Multiprocessors
 Scalability, availability, power efficiency

 Job-level (process-level) parallelism
 High throughput for independent jobs

 Parallel processing program
 Single program run on multiple processors

 Multicore microprocessors
 Chips with multiple processors (cores)

§9.1 Introduction

Hardware and Software
 Hardware

 Serial: e.g., Pentium 4
 Parallel: e.g., 16 cores on an Intel i7-10700

CPU
 Software

 Sequential: e.g., matrix multiplication
 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware
 Challenge: making effective use of parallel

hardware, aka "load balancing"

What We’ve Already Covered
 §2.11: Parallelism and Instructions

 Synchronization
 §3.6: Parallelism and Computer Arithmetic

 Associativity
 §4.10: Parallelism and Advanced

Instruction-Level Parallelism
 §5.8: Parallelism and Memory Hierarchies

 Cache Coherence
 §6.9: Parallelism and I/O:

 Redundant Arrays of Inexpensive Disks

Parallel Programming
 Parallel software is the problem
 Need to get significant performance

improvement
 Otherwise, just use a faster uniprocessor,

since it’s easier!
 Difficulties

 Partitioning
 Coordination
 Communications overhead

§7.2 T
he D

ifficulty of C
reating P

arallel P
rocessing P

rogram
s

Amdahl’s Law (Review)
 Sequential part can limit speedup
 T = Tp + Ts

("p": parallelizeable, "s": sequential)
 Tnew = Tp / N + Ts for N processors

 let f = Tp / Told, the fraction of time in the original
program that can be parallelized

 then Tp = f T and Ts = (1 - f) T
 we derive

Speedup=
1

(1−F para lle liza bl e)+Fparall eli zabl e/N processors
=90

speedup≡
T
Tnew

=
T

(1−f)T+
f
N
T

=
1

(1−f)+
f
N

Amdahl’s Law (Review)

 Sequential part can limit speedup
 Example: N = 100 processors, want 90× speedup?
 We solve:

 Yields f ≈ 0.999
 Need sequential part to be 0.1% of original time

1

(1−f)+
f
N

=90

Scaling Example
 Workload: (a) sum of 10 scalars, and (b) 10 × 10

matrix sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd
 10 processors

 Time = 10 × tadd + 100/10 × tadd = 20 × tadd
 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd
 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Scaling Example (cont)
 What if matrix size is 100 × 100?
 Single processor: Time = (10 + 10000) × tadd

 10 processors
 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)
 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)
 Assuming load balanced

Strong vs Weak Scaling
 Strong scaling: problem size fixed

(speedup is easy)
 As in example

 Weak scaling: problem size proportional to
number of processors (speedup is hard)
 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix
 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Strong vs Weak Scaling
 Which to use?
– depends on the application:

What are you trying to prove to whom?
– given problem size M and P processors

 Strong scaling (solve existing problems
faster)
– memory/processor ~M/P

 Weak scaling (take on bigger problems)
– memory/processor ~M
– may be affected by memory bottleneck

Shared Memory
 SMP: shared memory multiprocessor

 Hardware provides single physical
address space for all processors

 Synchronize shared variables using locks
 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

§7.3 S
hared M

em
ory M

ultiprocessors

Example: Sum Reduction
 Sum 100,000 numbers on 100 processor UMA

 Each processor has ID: 0 ≤ Pn ≤ 99
 Partition 1000 numbers per processor
 Initial summation on each processor
 sum[Pn] = 0;
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

 Now need to add these partial sums
 Reduction: divide and conquer
 Half the processors add pairs, then quarter, …
 Need to synchronize between reduction steps

Example: Sum Reduction

half = 100; /* private */

repeat

 synch();

 if (half % 2 != 0 && Pn == 0)

 sum[0] = sum[0] + sum[half-1];

 /* Conditional sum needed when half is odd;

 Processor0 gets missing element */

 half = half / 2; /* dividing line on who sums */

 if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Message Passing
 Each processor has private physical

address space
 Hardware sends/receives messages

between processors §7.4 C
lusters and O

ther M
essage-P

assing M
ultiprocessors

Loosely Coupled Clusters
 Network of independent computers

 Each has private memory and OS
 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks
 Web servers, databases, simulations, …

 High availability, scalable, affordable
 Problems

 Administration cost (prefer virtual machines)
 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP

Sum Reduction (Again)
 Sum 100,000 on 100 processors
 First distribute 1000 numbers to each

 Then do partial sums

 sum = 0;
for (i = 0; i < 1000; i = i + 1)
 sum = sum + AN[i];

 Reduction
 Half the processors send, other half receive

and add
 The quarter send, quarter receive and add, …

Sum Reduction (Again)
 Given send() and receive() operations

limit = 100; half = 100;/* 100 processors */
repeat
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum);
 if (Pn < (limit/2))
 sum = sum + receive();
 limit = half; /* upper limit of senders */
until (half == 1); /* exit with final sum */

 Send/receive also provide synchronization
 Assumes send/receive take similar time to addition

Grid Computing
 Separate computers interconnected by

long-haul networks
 E.g., Internet connections
 Work units farmed out, results sent back

 Can make use of idle time on PCs
 E.g., SETI@home, World Community Grid

Multithreading
 Performing multiple threads of execution in

parallel
 Replicate registers, PC, etc.
 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle
 Interleave instruction execution
 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)
 Simplifies hardware, but doesn’t hide short stalls

(eg, data hazards)

§7.5 H
ardw

are M
ultithreading

Simultaneous Multithreading
 In multiple-issue dynamically scheduled

processor
 Schedule instructions from multiple threads
 Instructions from independent threads execute

when function units are available
 Within threads, dependencies handled by

scheduling and register renaming
 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Multithreading Example

superscalar, but
no multithreading

superscalar with
various kinds of
multithreading

Future of Multithreading
 Will it survive? In what form?
 Power considerations simplified

microarchitectures
 Simpler forms of multithreading

 Tolerating cache-miss latency
 Thread switch may be most effective

 Multiple simple cores might share
resources more effectively

Instruction and Data Streams
 An alternate classification

§7.6 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, and V

ector

MIMD:
Intel Xeon e5345

MISD:
No examples today

Multiple

SIMD: SSE
instructions of x86

SISD:
Intel Pentium 4

SingleInstruction
Streams

MultipleSingle

Data Streams

 SPMD: Single Program Multiple Data
 A parallel program on a MIMD computer
 Conditional code for different processors

SIMD
 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time
 Each with different data address, etc.

 Simplifies synchronization
 Reduced instruction control hardware
 Works best for highly data-parallel

applications

Vector Processors
 Highly pipelined function units
 Stream data from/to vector registers to units

 Data collected from memory into registers
 Results stored from registers to memory

 Example: Vector extension to MIPS
 32 × 64-element registers (64-bit elements)
 Vector instructions

 lv, sv: load/store vector
 addv.d: add vectors of double
 addvs.d: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Example: DAXPY (Y = a × X + Y)
 Conventional MIPS code

 l.d $f0,a($sp) ;load scalar a
 addiu $r4,$s0,#512 ;upper bound of what to load
loop: l.d $f2,0($s0) ;load x(i)
 mul.d $f2,$f2,$f0 ;a × x(i)
 l.d $f4,0($s1) ;load y(i)
 add.d $f4,$f4,$f2 ;a × x(i) + y(i)
 s.d $f4,0($s1) ;store into y(i)
 addiu $s0,$s0,#8 ;increment index to x
 addiu $s1,$s1,#8 ;increment index to y
 subu $t0,$r4,$s0 ;compute bound
 bne $t0,$zero,loop ;check if done
 Vector MIPS code

 l.d $f0,a($sp) ;load scalar a
 lv $v1,0($s0) ;load vector x
 mulvs.d $v2,$v1,$f0 ;vector-scalar multiply
 lv $v3,0($s1) ;load vector y
 addv.d $v4,$v2,$v3 ;add y to product
 sv $v4,0($s1) ;store the result

Vector vs. Scalar
 Vector architectures and compilers

 Simplify data-parallel programming
 Explicit statement of absence of loop-carried

dependences
 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops
 More general than ad-hoc media

extensions (such as MMX, SSE)
 Better match with compiler technology

History of GPUs
 Early video cards

 Frame buffer memory with address generation for
video output

 3D graphics processing
 Originally high-end computers (e.g., SGI)
 Moore’s Law lower cost, higher density
 3D graphics cards for PCs and game consoles

 Graphics Processing Units
 Processors oriented to 3D graphics tasks
 Vertex/pixel processing, shading, texture mapping,

rasterization

§7.7 Introduction to G
raphics P

rocessing U
nits

Graphics in the System

GPU Architectures
 Processing is highly data-parallel

 GPUs are highly multithreaded
 Use thread switching to hide memory latency

 Less reliance on multi-level caches
 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems
 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL
 C for Graphics (Cg), High Level Shader Language

(HLSL), OpenGL Shading Language (GLSL)
 Compute Unified Device Architecture (CUDA),

OpenCL

Example: NVIDIA Tesla
Streaming

multiprocessor

8 × Streaming
processors

Example: NVIDIA Tesla
 Streaming Processors

 Single-precision FP and integer units
 Each SP is fine-grained multithreaded

 Warp: group of 32 threads
 Executed in parallel,

SIMD style
 8 SPs

× 4 clock cycles
 Hardware contexts

for 24 warps
 Registers, PCs, …

Classifying GPUs
 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD

 But with performance degredation
 Need to write general purpose code with care

Tesla MultiprocessorSIMD or VectorData-Level
Parallelism

SuperscalarVLIWInstruction-Level
Parallelism

Dynamic: Discovered
at Runtime

Static: Discovered
at Compile Time

Interconnection Networks
 Network topologies

 Arrangements of processors, switches, and links

§7.8 Introduction to M
ultiprocessor N

etw
ork Topologies

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

Multistage Networks

Network Characteristics
 Performance

 Latency per message (unloaded network)
 Throughput

 Link bandwidth
 Total network bandwidth
 Bisection bandwidth

 Congestion delays (depending on traffic)
 Cost
 Power
 Routability in silicon

Parallel Benchmarks
 Linpack: matrix linear algebra
 SPECrate: parallel run of SPEC CPU programs

 Job-level parallelism
 SPLASH: Stanford Parallel Applications for

Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and

OpenMP

§7.9 M
ultiprocessor B

enchm
arks

Code or Applications?
 Traditional benchmarks

 Fixed code and data sets
 Parallel programming is evolving

 Should algorithms, programming languages,
and tools be part of the system?

 Compare systems, provided they implement a
given application

 E.g., Linpack, Berkeley Design Patterns
 Would foster innovation in approaches to

parallelism

Modeling Performance
 Assume performance metric of interest is

achievable GFLOPs/sec
 Measured using computational kernels from

Berkeley Design Patterns
 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed
 For a given computer, determine

 Peak GFLOPS (from data sheet)
 Peak memory bytes/sec (using Stream

benchmark)

§7.10 R
oofline: A

 S
im

ple P
erform

ance M
odel

Roofline Diagram

Attainable GPLOPs/sec
= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Comparing Systems
 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz
vs. 2.3GHz

 Same memory system

 To get higher performance
on X4 than X2

 Need high arithmetic intensity
 Or working set must fit in X4’s

2MB L-3 cache

Optimizing Performance
 Optimize FP performance

 Balance adds & multiplies
 Improve superscalar ILP

and use of SIMD
instructions

 Optimize memory usage
 Software prefetch

 Avoid load stalls
 Memory affinity

 Avoid non-local data
accesses

Optimizing Performance
 Choice of optimization depends on

arithmetic intensity of code

 Arithmetic intensity is
not always fixed
 May scale with

problem size
 Caching reduces

memory accesses
 Increases arithmetic

intensity

Four Example Systems

§7.11 R
eal S

tuff: B
enchm

arking F
our M

ulticores …

2 × quad-core
Intel Xeon e5345
(Clovertown)

2 × quad-core
AMD Opteron X4 2356
(Barcelona)

Four Example Systems

2 × oct-core
IBM Cell QS20

2 × oct-core
Sun UltraSPARC
T2 5140 (Niagara 2)

And Their Rooflines
Kernels

 SpMV (left)
 LBHMD (right)

Some optimizations
change arithmetic
intensity

x86 systems have
higher peak GFLOPs

 But harder to achieve,
given memory
bandwidth

Performance on SpMV
 Sparse matrix/vector multiply

 Irregular memory accesses, memory bound
 Arithmetic intensity

 0.166 before memory optimization, 0.25 after

 Xeon vs. Opteron
 Similar peak FLOPS
 Xeon limited by shared FSBs

and chipset
 UltraSPARC/Cell vs. x86

 20 – 30 vs. 75 peak GFLOPs
 More cores and memory

bandwidth

Performance on LBMHD
 Fluid dynamics: structured grid over time steps

 Each point: 75 FP read/write, 1300 FP ops
 Arithmetic intensity

 0.70 before optimization, 1.07 after

 Opteron vs. UltraSPARC
 More powerful cores, not

limited by memory bandwidth
 Xeon vs. others

 Still suffers from memory
bottlenecks

Achieving Performance
 Compare naïve vs. optimized code

 If naïve code performs well, it’s easier to write
high performance code for the system

0%

0%

6.4

16.7

Naïve code
not feasible

SpMV

LBMHD

IBM Cell QS20

86%

93%

4.1

10.5

3.5

9.7

SpMV

LBMHD

Sun UltraSPARC
T2

38%

50%

3.6

14.1

1.4

7.1

SpMV

LBMHD

AMD
Opteron X4

64%

82%

1.5

5.6

1.0

4.6

SpMV

LBMHD

Intel Xeon

Naïve as % of
optimized

Optimized
GFLOPs/sec

Naïve
GFLOPs/sec

KernelSystem

Fallacies
 Amdahl’s Law doesn’t apply to parallel

computers
 Since we can achieve linear speedup
 But only on applications with weak scaling

 Peak performance tracks observed
performance
 Marketers like this approach!
 But compare Xeon with others in example
 Need to be aware of bottlenecks

§7.12 F
allacies and P

itfalls

Pitfalls
 Not developing the software to take

account of a multiprocessor architecture
 Example: using a single lock for a shared

composite resource
 Serializes accesses, even if they could be done in

parallel
 Use finer-granularity locking

Concluding Remarks
 Goal: higher performance by using multiple

processors
 Difficulties

 Developing parallel software
 Devising appropriate architectures

 Many reasons for optimism
 Changing software and application environment
 Chip-level multiprocessors with lower latency, higher

bandwidth interconnect
 An ongoing challenge for computer architects!

§7.13 C
oncluding R

em
arks

Chapter 7 <75>

M
IC

R
O

A
R

C
H

IT
EC

TU
R

E

• Patterson & Hennessy’s: Computer
Architecture: A Quantitative Approach

• Conferences:
– www.cs.wisc.edu/~arch/www/

– ISCA (International Symposium on Computer
Architecture)

– HPCA (International Symposium on High Performance
Computer Architecture)

Other Resources

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

