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*Introduction

*Latches and Flip-Flops
*Synchronous Logic Design
*Finite State Machines
*Timing of Sequential Logic
*Parallelism
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Introduction

*Outputs of sequential logic depend on current
and prior input values — it has memory.

*Some definitions:
—State: all the information about a circuit necessary
to explain its future behavior
—Latches and flip-flops: state elements that store
one bit of state
—Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops

Sequential Logic Design
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Sequential Circuits

*(G1ve sequence to events

*Have memory (short-term)

*Use feedback from output to input to store
information

Sequential Logic Design

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <4>

38 LA
oD :
7
o
o 4
. \:V’lt )

ELSEVIER



State Elements

*The state of a circuit influences its future
behavior

e State elements store state
-Bistable circuit
-SR Latch
-D Latch
-D Flip-flop

Sequential Logic Design
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Sequential Logic Design
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Bistable Circuit

*Fundamental building block of other state
clements
*Two outputs: O, O

*No 1nputs

YLy




Bistable Circuit Analysis

*Consider the two possible cases:
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*SR Latch

S=1,R=0
S=0,R=1
S=0,R=0
S=1,R=1

Sequential Logic Design
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SR Latch Analysis

-S=1,R=0:
thenO=1and =0

-S=0,R=1:
then O=1and Q=0

Sequential Logic Design
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SR Latch Analysis

Sequential Logic Design
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SR Latch Analysis

-$5=0,R=0:

then 0=0,,,,
-Memory!

-S=1,R=1:
then O=0,0=0
-Invalid State
Q#NOTQ

Sequential Logic Design
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SR Latch Symbol

*SR stands for Set/Reset Latch
-Stores one bit of state (Q)

*Control what value 1s being stored with S, R

inputs
-Set: Make the output 1 SR Latch
S=1,R=0,0=1) Symbol
-Reset: Make the output 0 R al
S=0,R=1,0=0)
_| S Q |

Sequential Logic Design

*Must do something to avoid
invalid state (when S =R = 1) ;
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*Two mnputs: CLK, D
-CLK: controls when the output changes
-D (the data input): controls what the output changes to

*Function
-When CLK =1, D Latch
D passes through to O (transparent) Symbol
-When CLK =0, CI|_K

O holds its previous value (opaque)
* Avoids invalid case when 7D 8
Q

Q#NOTQ B

Sequential Logic Design

P!
© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <13> ELSEVIER



D Latch Internal Circuit
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D Latch Internal Circuit
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D Flip-Flop

eInputs: CLK, D D Flip-Flop

*Function ‘Symbols

-Samples D on rising edge of CLK |
*When CLK rises fromOto 1,D | D
passes through to O
*Otherwise, O holds its previous
value

-0 changes only on rising edge of CLK

*Called edge-triggered
* Activated on the clock edge

Q
Q

Sequential Logic Design
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complementary clocks
*When CLK =0

-L1 is transparent

-L2 is opaque

-D passes through to N1
*When CLK =1

-L.2 is transparent
-L1 is opaque
-N1 passes through to QO

-D passes through to QO

Sequential Logic Design
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D Flip-Flop Internal Circuit

*Thus, on the edge of the clock (when CLK rises from (0 1)
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D Latch vs. D Flip-Flop
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Enabled Flip-Flops

eInputs: CLK, D, EN

-The enable input (EN) controls when new data (D) is stored

* Function
-EN = 1: D passes through to O on the clock edge
-EN = 0: the flip-flop retains its previous state

Sequential Logic Design
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Resettable Flip-Flops

*Inputs: CLK, D, Reset

e Function:

-Reset = 1: Q 1s forced to 0
-Reset = 0: flip-flop behaves as ordinary D flip-flop

Symbols

|
N

—D Q_ B I

Reset |
|
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Resettable Flip-Flops

*[wo types:
-Synchronous: resets at the clock edge only
-Asynchronous: resets immediately when Reset = 1

* Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop
*Synchronously resettable flip-flop?

Sequential Logic Design
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Resettable Flip-Flops

*[wo types:
-Synchronous: resets at the clock edge only
-Asynchronous: resets immediately when Reset = 1

* Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop
*Synchronously resettable flip-flop?

Internal

Circuit

CLK

D_
Reset — > b Q—Q
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Settable Flip-Flops
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Memory Arrays

*3 common types:

-Static random access memory (SRAM)
-Read only memory (ROM)

Address —— Array

Sequential Logic Design

M

Data

© Digital Design and Computer Architecture, 2™ Edition, 2012

*Efficiently store large amounts of data

-Dynamic random access memory (DRAM)
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Memory Arrays

*2-dimensional array of bit cells
eEach bit cell stores one bit

e N address bits and M data bits:

N
Address ——
-2¥ rows and M columns

Array

-Depth: number of rows (number of words)
-Width: number of columns (size of word)
-Array size: depth x width =2V x M

Address Data

Sequential Logic Design

11 |o|1|o| A
Address —<— Array 10 |1]0/0
depth
01 |1/1]0
3 00 |0[1]1] y
-—p
Data width
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Memory Array Example

22 x 3-bit array

*Number of words: 4

*Word size: 3-bits

*For example, the 3-bit word stored at address 10 1s 100

Address Data

Sequential Logic Design

11 |o|1/0| A
Address ﬁzh Array 10 11010
depth
01 1110
3 00 011 v
-
Data width
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Memory Arrays

Address A9 32-bit
Array

1024-word x

$32

Data

Sequential Logic Design
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Memory Array Bit Cells

-
KS) o
8 bitline
Q wordline |
Q stored
'E.’ bit
o
=
E bitline = bitline = Z
..B wordline = 1 t , . wordline = 0 : | 3
store Store
: bit=0 bit=0
Q
: bitline = bitline =
°~ wordline = 1 , wordline = 0 |
stored stored
% bit =1 bit = 1
(a) (b)
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Memory Array Bit Cells

S
-y -
(7. bitline
QL .
Q wordline |
Q stored
O
=
E bitline = bitline = Z
. wordline = 1 , wordline = 0 |
'B stored stored
: bit=0 bit=0
QU - -
: bitline = 1 bitline = 7
°~ wordline = 1 , wordline = 0 |
stored stored

Q bit = 1 bit = 1
Vg

(a) (b)
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Memory Array

*Wordline:

-like an enable

-single row in memory array read/written
-corresponds to unique address

-only one wordline HIGH at once

Sequential Logic Design

2:4
Decoder bitline, bitline, bitline0
11 wordllne3 | | |
° stored stored stored
Address —— wordline. | Pit=0 bit = 1 bit = 0
10 2 [ [ [
stored stored stored
wordline bit = 1 bit=0 bit=0
01 ! I I |
stored stored stored
wordline bit = 1 bit = 1 bit=0
00 0 | i |
stored stored stored
bit=0 bit = 1 bit = 1
Data2 Data1 Data0
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Types of Memory

*Random access memory (RAM): volatile
*Read only memory (ROM): nonvolatile

Sequential Logic Design
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RAM: Random Access Memory

*Volatile: loses i1ts data when power off
*Read and written quickly

*Main memory in your computer 1s RAM
(DRAM)

Historically called random access memory because any data
word accessed as easily as any other (in contrast to sequential
access memories such as a tape recorder)

Sequential Logic Design
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ROM: Read Only Memory

*Nonvolatile: retains data when power off
*Read quickly, but writing 1s impossible or slow
*Flash memory 1n cameras, thumb drives, and
digital cameras are all ROMs

Historically called read only memory because ROMs were
written at manufacturing time or by burning fuses. Once ROM
was configured, it could not be written again. This i1s no longer
the case for Flash memory and other types of ROMs.

Sequential Logic Design
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Types of RAM

*DRAM (Dynamic random access memory)
*SRAM (Static random access memory)

*Differ in how they store data:
-DRAM uses a capacitor
-SRAM uses cross-coupled inverters

Sequential Logic Design
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*Invented DRAM in
1966 at IBM

*Others were skeptical
that the 1dea would work
*By the m1d-1970’s
DRAM 1n virtually all
computers

Sequential Logic Design
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DRAM

*Data bits stored on capacitor
* Dynamic because the value needs to be refreshed

(rewritten) periodically and after read:
-Charge leakage from the capacitor degrades the value
-Reading destroys the stored value

bitline bitline
wordline | wordline
stored —
bit stored |
bit |
\V4

Sequential Logic Design
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bitline
wordline
L
stored +|+
bit=1 |
V

Sequential Logic Design
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SRAM

bitline

wordline |
stored
bit

bitline bitline

wordline

Il

—{>o—
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Memory Arrays Review

m 2:4
.~
m Decoder bitline, bitline, bitline,
m 11 wordllne3 | | |
9 stored stored stored
Q Address —— wordline. | Bit=0 bit = 1 bit = 0
U 10 2 [ [ [
© stored stored stored
m wordline bit = 1 bit=0 bit=0
Q 01 1 I I I
stored stored stored
—) . bit = 1 bit = 1 bit =0
wordllne0
— 00 | | i
c stored stored stored
o: bit=0 bit = 1 bit = 1
: Data, Data, Data,
g DRAM bit cell: SRAM bit cell:
°~ bitline bitline bitline
Q wordline T wordline

I J_[Z]J_
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ROM: Dot Notation

-
O
=
7))
8 - bitline
5 Decoder ‘ wordline T
11
.~ M1
Address—2—
(@) ress bit cell
3 10—e containing O
E 01 @ ® bitline
'.B % Ll wordline
: bit cell
g Data, Data; Datag containing 1
(@ y
Q
Vo)
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*Developed memories and high speed
circuits at Toshiba, 1971-1994
*Invented Flash memory as an
unauthorized project pursued during
nights and weekends in the late 1970’s
*The process of erasing the memory
reminded him of the flash of a camera
*Toshiba slow to commercialize the
idea; Intel was first to market in 1988
*Flash has grown into a $25 billion per
year market

Sequential Logic Design
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2:4
Decoder
11

Address vzh
10

01

00

Sequential Logic Design

Data, Data, Datag
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ROM Logic

2:4
Decoder

"t Data, = A, ® A,
10—e Datal =Aj + AO
01 o o Data, = AA,

Address vzg

00 ® e

Data, Data, Datag

Sequential Logic Design
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Sequential Logic Design
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Example: Logic with ROMs

Implement the following logic functions using a 22 x 3-bit

ROM:
-X=AB
-Y=A+B
-Z=AB
A B 2

2:4

Decoder

11

10

01

00

SN

: Qn‘
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Example: Logic with ROMs

Implement the following logic functions using a 22 x 3-bit

-

D

(7

Q

Q ROM:

Q -X=A4B 2:4

Yot -Y=A4A+8B Decoder

g’ 7=AB 1 oo
- A B -2

= 10 Y o
S

.E 01 ®
Q

= 00

o

Q X Y Z
(9

SN

: Qn‘
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Logic with Any Memory Array

2:4
Decoder bitline, bitline,, bitline,
11 wordllne3 | | |
2 stored stored stored
Address —— wordline. | PIt=0 bit = 1 bit = 0
10 2 [ [ [
stored stored stored
wordline bit = 1 bit=0 bit=0
01 ! I I I
stored stored stored
wordline bit = 1 bit = 1 bit=0
00 0 i | |
stored stored stored
bit=0 bit = 1 bit = 1
Data, Data, Data,

Data, =A;, @ A,
Data, = A, + A,
Data, = AA,

Sequential Logic Design
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Logic with Memory Arrays

Implement the following logic functions using a 22 x 3-bit
memory array:

-X=AB

-Y=A4+B

-/=AB

Sequential Logic Design
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Logic with Memory Arrays

Sy . . . . .

vy Implement the following logic functions using a 2? X 3-bit

8 memory array.

-X=AB

u _ 2:4

By -Y=A4A+B Decoder | bitline, bitline, bitline,
m -7=A4RB 11 wordline, | | |

stored stored stored

3 AB 2o wordling. | Dit=1 bit = 1 bit = 0
- 10 : | | |

c stored stored stored

. wordline. | bit=0 bit = 1 bit = 1

'B 01 1 | | |

: stored stored stored

m . bit=0 bit = 1 bit=0

wordline,
: 00 I [ [
stored stored stored

@y bit = 0 bit = 0 bit = 0
% X Y Z
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Truth
Table

4-word x 1-bit Array

Logic with Memory Arrays

Called lookup tables (LUTs): look up output at each input
combination (address)

I

R~ o o>

R o ol

Sequential Logic Design
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stored
bit=0

I
stored

bit=1
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Multi-ported Memories

*Port: address/data pair

*3-ported memory
-2 read ports (A1/RD1, A2/RD2)
-1 write port (A3/WD3, WE3 enables writing)

*Register file: small multi-ported memory

Sequential Logic Design
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SystemVerilog Memory Arrays

// 256 x 3 memory module with one read/write port
module dmem( input logic clk, we,
input logic[7:0] a
input logic [2:0] wd,
output logic [2:0] rd);

logic [2:0] RAM[255:07;
assign rd = RAM[a];
always @ (posedge clk)

1f (we)

RAM[a] <= wd;
endmodule

Sequential Logic Design
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Logic Arrays

*PLAs (Programmable logic arrays)
-AND array followed by OR array
-Combinational logic only
-Fixed internal connections

*FPGASs (Field programmable gate arrays)
-Array of Logic Elements (LEs)
-Combinational and sequential logic
-Programmable internal connections

Sequential Logic Design
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PLAs: Dot Notation

S
O
—
V)
QU
Q AND Implicants OR
Q ARRAY N ARRAY
.E’ N y - y,
S o
utputs
: 7 5 ¢ OR ARRAY
( ) ( )
S Y Y Y
]
E ® @ ABC @
g @ @ @ AB(_: ®
° ° AB .
Q
e
o J . J
AND ARRAY
X Y
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FPGA: Field Programmable Gate Array

*Composed of:
-LLEs (Logic elements): perform logic
-10Es (Input/output elements): interface with outside
world
-Programmable interconnection: connect LEs and
IOEs
-Some FPGAs include other building blocks such as
multipliers and RAMs

Sequential Logic Design
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General FPGA Layout
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LE: Logic Element

*Composed of:
-LLUTs (lookup tables): perform combinational logic
-Flip-flops: perform sequential logic
-Multiplexers: connect LUTs and flip-flops

Sequential Logic Design
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Altera Cyclone IV LE

Q ‘
m LAB-wide
Register chain  synchronous Register bypass
Q routing from load
Q previous LE . LAB-wide s |Programmable
- register
LE camry-in —— - fh regl
Q : '
~ oo 3 Lok . cou
a P -Up Synchronous column, and
B'! data 3 Table |Carry _._| H Loadand [ P° © direct link
° (LuT)  |Chain Clear Logic | —pp routing
i e
q o) L = Row,
column, and
— 7y direct link
S Fan ot
LR
® Chip-wide |Asynchronous — Local
reset Clear Logic routing
: Register feedback (DEV_CLRn)
Clock & Register
m Clock Enable L chain
v Select output
: LE carry-out labclk 1 —
u labclk 2 —

labclkena 1 —
labclkena 2 —
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*The Spartan CLB has:
-1 four-input LUT
-1 registered output
-1 combinational output

Sequential Logic Design
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LE Configuration Example

Show how to configure a Cyclone IV LE to perform the
following functions:

-X=ABC + ABC

-Y =AB —

Sequential Logic Design
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LE Configuration Example

.~
8 Show how to configure a Cyclone IV LE to perform the
Q following functions:
Q -X=ABC + ABC
Q (A) ®  (© (X)
data 1 data2 data 3 data 4| LUT output
d 0 0 0 X 0 e \
0 0 1 X 1
- o 1o x| 4 ot
0 1 1 X 0 C
= T e
.B 1 0 1 X 0 LUT
1 1 0 X 1
: 1 1 1 X 0 - LE1 J
g (A) (8) (Y)
data 1 data 2 data3 data 4| LUT output 4 N\
u 0 0 X X 0 A — data 1
0 1 X X 0 B — data 2
Q 1 0 X X 1 0 | data 3 v
m 1 1 X X 0 0 — data 4 LUT
\ LE2
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FPGA Design Flow

Using a CAD tool (such as Altera’s Quartus II)
*Enter the design using schematic entry or an HDL
*Simulate the design
*Synthesize design and map it onto FPGA
*Download the configuration onto the FPGA
*Test the design

Sequential Logic Design
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*Introduction (now)
Analysis (now)
*Virtual Memory (now)

Summary (later)

Sequential Logic Design
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*Caches (now)
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Introduction

*Computer performance depends on:
-Processor performance
-Memory system performance

Memory Interface

CLK CLK
| |
4 AV MemWrite )KWE N
Processor Adc.jress Memory ReadData
WriteData
\_ J

Sequential Logic Design
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Processor-Memory Gap

=
Ry
‘Q’} In prior chapters, assumed access memory in 1 clock
Q cycle — but hasn’t been true since the 1980°s
QO
.iii, 100,000
3 10,000 Y
—
c g 1O 00 i e e
5 E
c E OO eveerereseeserereseneerenseeseeseeseeses esssssessseessees B e st s s s
)
g 10 o R e e e e s A e SRR R R R R AR ORI R RSN AR RA RN
m 1
"’ 1980 1585 19b0 1db5 2660
Year
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Memory System Challenge

*Make memory system appear as fast as
Processor
*Use hierarchy of memories

*]deal memory:
-Fast
-Cheap (inexpensive)
-Large (capacity)

But can only choose two!

Sequential Logic Design
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Memory Hierarchy

Technology | Price / GB Access Bandwidth

A Time (ns) (GB/s)
/\ SRAM $10,000 1 25+
Cache

3 DRAM $10 10 - 50 10
2 Main Memory
n
SSD $1 100,000 0.5
HDD $0.1 10,000,000 0.1
Virtual Memory
Capacity >

Sequential Logic Design

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 3 <70>



Sequential Logic Design
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Exploit locality to make memory accesses fast

Temporal Locality:
—Locality in time
—|f data used recently, likely to use it again soon
—How to exploit: keep recently accessed data in higher
levels of memory hierarchy

*Spatial Locality:
—Locality in space
—|f data used recently, likely to use nearby data soon

—How to exploit: when access data, bring nearby data
into higher levels of memory hierarchy too




Memory Performance

*Hit: data found 1n that level of memory hierarchy
* Miss: data not found (must go to next level)

Hit Rate = # hits / # memory accesses
= 1 — Miss Rate

Miss Rate = # misses / # memory accesses
= 1 — Hit Rate

*Average memory access time (AMAT): average time
for processor to access data

AMAT = cache T MRcache[tMM T MRMM(tVM)]

Sequential Logic Design
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Memory Performance Example 1

* A program has 2,000 loads and stores

*1,250 of these data values 1n cache

*Rest supplied by other levels of memory hierarchy
* What are the hit and miss rates for the cache?

Sequential Logic Design
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Memory Performance Example 1

* A program has 2,000 loads and stores

*1,250 of these data values 1n cache

*Rest supplied by other levels of memory hierarchy
* What are the hit and miss rates for the cache?

Hit Rate = 1250/2000 = 0.625
Miss Rate = 750/2000 = 0.375 = 1 — Hit Rate

Sequential Logic Design
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Memory Performance Example 2

*Suppose processor has 2 levels of hierarchy:
cache and main memory
*f...ne = 1 Cycle, t,,,= 100 cycles

*What is the AMAT of the program from
Example 1?

Sequential Logic Design
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Memory Performance Example 2

*Suppose processor has 2 levels of hierarchy:
cache and main memory
*f...ne = 1 Cycle, t,,,= 100 cycles

*What is the AMAT of the program from
Example 1?

AMAT = cache T MRcache(tMM)
=[1+0.375(100)] cycles
= 38.5 cycles

Sequential Logic Design
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Gene Amdahl, 1922-

* Amdahl’s Law: the effort
spent increasing the |
performance of a subsystem |
1s wasted unless the
subsystem affects a large
percentage of overall
performance

*Co-founded 3 companies,
including one called

Amdahl Corporation in
1970

Sequential Logic Design
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*Highest level in memory hierarchy

*Fast (typically ~ 1 cycle access time)
*ldeally supplies most data to processor
*Usually holds most recently accessed data

Sequential Logic Design
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Cache Desigh Questions

\What data is held in the cache?
*How is data found?
*What data is replaced?

Focus on data loads, but stores follow same principles

Sequential Logic Design
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What data is held in the cache?

|ldeally, cache anticipates needed data and
puts it in cache
*But impossible to predict future
*Use past to predict future — temporal and
spatial locality:
—Temporal locality: copy newly accessed data
into cache

—Spatial locality: copy neighboring data into
cache too

Sequential Logic Design

Pe !
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Cache Terminology

*Capacity (C):
—number of data bytes in cache
*Block size (b):
—bytes of data brought into cache at once
Number of blocks (B = C/b):
—number of blocks in cache: B=C/b
*Degree of associativity (N):
—number of blocks in a set
Number of sets (S = B/N):
—each memory address maps to exactly one
cache set

Sequential Logic Design
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*Cac
*Eac
*Cac

Sequential Logic Design

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <82> ESI

How is data found?

ne organized into S sets
n memory address maps to exactly one set

nes categorized by # of blocks in a set:

—Direct mapped: 1 block per set
—N-way set associative: N blocks per set
—Fully associative: all cache blocks in 1 set

*Examine each organization for a cache with:
—Capacity (C = 8 words)
—Block size (b = 1 word)

—So, number of blocks (B = 8)




Example Cache Parameters

*C = 8 words (capacity)
b =1 word (block size)
*So, B = 8 (# of blocks)

Ridiculously small, but will illustrate organizations

Sequential Logic Design
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Sequential Logic Design

00...
00...
00...
00..
00...
00...
00...
00...
00...
00...

11111100
11111000
11110100
11110000
11101100
11101000
11100100
11100000

00100100
00100000
00011100

.00011000

00010100
00010000
00001100
00001000
00000100
00000000

mem[OxFF...FC]

mem[OxFF...F8]

mem[OxFF...F4]

mem[OxFF...EC]

mem[OxFF...E8]

ooz memfQxEE B4

mem[OxFF...EQ]

mem[0x00..20]

Direct Mapped Cache

Address
11...

11...
11...
11..
11...
11...
11...
11...

mem[0x00..1C]

mem[0x00...18]

mem[0x00...14]

mem[0x00...0C]

mem[0x00...08]

mem[0x00...00]

230 Word Main Memory

© Digital Design and Computer Architecture, 2™ Edition, 2012

2° Word Cache
Chapter 3 <84>

Set Number

7 (111)
6 (110)
5 (101)
4 (100)
3 (011)
2 (010)
1(001)
0 (000)

Py
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Direct Mapped Cache Hardware

=
O
(7) Tag Set CI)BfﬁEt
Q Memory 00
Address
Q S
V Tag Data
O
-y
8’ 8-entry x
- (1+27+32)-bit
SRAM
S -
-
Q | 27 32
: —
(e
U
0

SN

Hit Data e
' ggin'
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Direct Mapped Cache Performance

-
O
A e o

ag e se
v Memory 50...00 001100
Q Address :
Q V Tag Data
*=w # MIPS assembly code 0 Set7 (111)
(@) 0 Set 6 (110)
O addi $t0, $0, 5 0 Set 5 (101)
~l loop: beg $t0, $0, done 0 Set 4 (100)
R 1w $tl, 0x4(S50) 1 00..00 | mem[0x00...0C] | Set 3 (011)
.c 1w St2, 0xC($0) 1] 00..00 | mem[0x00...08] | Set 2 (010)
f lw  St3. 0x8(50) 1 | 00..00 | mem[0x00..04] | Set 1 (001)
- addi $t0, $t0, -1 0 Set 0 (000)
Y J loop .
: done: MlSS Rate — ?
(o p
QL
¥

A
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Direct Mapped Cache Performance

&
O
a Byte

Tag Set Offset
v Memory 5...00 [001]00
Q Address :
Q V Tag Data
‘== # MIPS assembly code 0 Set 7 (111)
O 0 Set 6 (110)
O addi $t0, $0, 5 0 Set 5 (101)
~l loop: beg $t0, $0, done 0 Set 4 (100)
R 1w $tl, 0x4($0) 1| 00..00 | mem[0x00...0C] [ Set 3 (011)
.B 1w st2, 0xC(S0) 1| 00..00 | mem[0x00...08] | Set 2 (010)
'B 1w $t3, 0x8(S0) 1 | 00...00 | mem[0x00...04] | Set 1 (001)
= addi $t0, $t0, -1 0 Set 0 (000)
QL J loop .
=  done: Miss Rate = 3/15
@y =20%
\D
e Temporal Locality

Compulsory Misses

e S
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Direct Mapped Cache: Conflict

&
()]
oy
8 T Set oBfBr/tet
ag e se
Memory 50...01 [001]00
Q Address 3
Q V Tag Data
a # MIPS assembly code 0 Set 7 (111)
Q addi $t0, $0, 5 3 ggtg%ﬁ)g
-] loop: beg $t0, $0, done 0 Set 4 (100)
E 1w  $tl, 0x4(50) 0 Set 3 (011)
.-B 1w $t2, 0x24(S0) 0 Set 2 (010)
addi $t0, $t0, -1 lel1T o0 oo | TeMOUU-DIT | Set 1 (001)
Q=) 5 loop 0 ] set 0/(000)
done:
>
o Miss Rate = ?
\D
g

g sl
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-
(@)
©
8 T Set oBfBr/tet
ag e se

Memory 55 ~61 7001100
Q Address 3
O V Tag Data
° # MIPS assembly code
(@) 0
o addi $t0, $0, 5 g
-l loop: beg $t0, $0, done 0
— 1w Stl, 0x4(S0) 0
.c 1w St2, 0x24(S0) 0
E addi $t0, $t0, -1 ->1 00...00 mgm%gggj

. Loop : mem[0x00...24!
Q) done:
=
o Miss Rate = 10/10
& =100%
Conflict Misses

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <89>

Direct Mapped Cache: Conflict

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

. S
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N-Way Set Associative Cache

© Digital Design and Computer Architecture, 2™ Edition, 2012
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Data
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'9 Byte
8 Mem ory Tag Set O(;fs(,)et
Q Address » 2 Way 1 Way 0
[ | | |
-E V Tag Data V Tag Data
(@) -
o
—
— 28 32 28 32
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N-Way Set Associative

# MIPS assembly code

addi $t0, $0, 5
loop: beg $t0, $0, done Miss Rate = ?
1w stl, 0x4(s0)
1w St2, 0x24(S0)
addi $t0, st0, -1

Sequential Logic Design

7 loop
done:
Way 1 Way 0
[ | | |
V Tag Data V Tag Data
0 0 Set 3
0 0 Set 2
0 0 Set 1
0 0 Set 0

by
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <91> ELSEVIER



N-Way Set Associative

-

(@))

Sy

8 # MIPS assembly code

Q addi $t0, $0, 5

Q loop: beg $t0, $0, done Miss Rate = 2/10

oy 1w  S$tl, 0x4($0) —20%

(@) 1w $t2, 0x24(S0) - 0

@) addi $t0, $t0, -1

== i loop Associativity reduces

E done: conflict misses

'E Way 1 Way 0
[ | |

g V Tag Data V Tag Data

o 0 0 Set 3

Q 0 0 Set 2

u’ 1| 00...10 | mem[0x00...24] | 1 | 00...00 | mem[0x00...04] Set 1
0 0 Set0
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Fully Associative Cache

V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data V Tag Data

Reduces conflict misses
Expensive to build

Sequential Logic Design
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Spatial Locality?

*Increase block size:
—Block size, b = 4 words
—C = 8 words
—Direct mapped (1 block per set)
—Number of blocks, B=2 (C/b =8/4 = 2)

Sequential Logic Design

Block Byte
Tag Set Offset Offset
Memoy 1T oo
Address - .
V Tag Data
> Set 1
Set 0
L for A32 A32 A32 32
o > < 3
32
Hit Data Pe
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Cache with Larger Block Size

-
)
v Block Byte
QU P Tag Set Offset Offset
£ oo [400..100] 1 | 11 ] 00
(@) | T | | |
E_’ 800000 9 C
S e

a et set Offset
= ey gy

27 2
c V Tag Data
° > Set 1
: SZIO
: o for 132 132 32 A32
m = 3 2 S
s w
QL
Vg

Hit Data

AR
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Direct Mapped Cache Performance

addi $t0, $0, 5

loop: beg S$t0, S$0, done
1w Stl, 0x4(s0)
1w St2, 0xC($0)
1w $t3, 0x8(S$0)
addi $t0, s$t0, -1
7 loop

done:

Sequential Logic Design
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Direct Mapped Cache Performance

addi $t0, S0, 5

° -y

. : .

Q loop: beg S$t0, S$0, done Miss Rate = 1/15

Q 1w Stl, 0x4(s0) = 6.67°

1w St2, 0xC(S0) =6.67%

.E 1w $t3, 0x8(S0)

(@) addi izgp »to, -1 Larger blocks

J .

3 done - reduce compulsory misses
— through spatial locality

c Block Byte

Tag Set Offset Offset

'_: X;;‘:g?s'loo..ﬁolol i1 [00]

: V Tag Data

Set 1

m >(1) 00...00 | mem[0x00...0C] | mem[0x00...08] | mem[0x00...04] | mem[0x00...00] SgtO

: e 132 J32 132 Is2

(e p -

m =

Hit Data
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Cache Organization Recap

*Capacity: C

*Block size: b

Number of blocks in cache: B=C/b
*Number of blocks in a set: N
*Number of sets: S = B/N

Organization Number of Ways | Number of Sets
(V) (5 =B/N)

Direct Mapped 1 B

N-Way Set Associative| ] <N<B B/N

Fully Associative B 1

Sequential Logic Design
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Capacity Misses

*Cache is too small to hold all data of interest at once

*If cache full: program accesses data X & evicts data Y

*Capacity miss when access Y again

*How to choose Y to minimize chance of needing it again?
*Least recently used (LRU) replacement: the least recently used
block in a set evicted

Sequential Logic Design
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Types of Misses

*Compulsory: first time data accessed
*Capacity: cache too small to hold all data of
Interest

*Conflict: data of interest maps to same
location in cache

Miss penalty: time it takes to retrieve a block from
lower level of hierarchy

Sequential Logic Design
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# MIPS assembly

lw $t0, 0x04($0)
1w $tl, 0x24($0)
1w $t2, 0x54($0)

LRU Replacement

Way 1 Way 0
| 1 |
V U Tag Data V Tag Data
00 0 Set 3 (11)
0/0 0 Set 2 (10)
0|0 0 Set 1 (01)
00 0 Set 0 (00)

Sequential Logic Design
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LRU Replacement

# MIPS assembly

lw $t0, 0x04($0)
1w $tl, 0x24($0)
lw $t2, 0x54($0)

Sequential Logic Design

Way 1 Way 0
| 1 |
V U Tag Data V Tag Data
00 0 Set 3 (11)
00 0 Set 2 (10)
1] 0 00...010| mem[0x00...24] | 1| 00...000| mem[0x00...04] | Set 1 (01)
00 0 Set 0 (00)
(a)
Way 1 Way 0
| 1 |
V U Tag Data V Tag Data
0]0 0 Set 3 (11)
0]0 0 Set 2 (10)
1] 100..010 | mem[0x00...24] | 1| 00...101 | mem[0x00...54] | Set 1 (01)
0]0 0 Set 0 (00)
(b)
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Cache Summary

*What data is held in the cache?
—Recently used data (temporal locality)
—Nearby data (spatial locality)
*How is data found?
—Set is determined by address of data
—Word within block also determined by address
—In associative caches, data could be in one of several
ways
*What data is replaced?
—Least-recently used way in the set

Sequential Logic Design
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Miss Rate Trends

0.10

*Bigger caches reduce capacity misses

*Greater associativity reduces conflict misses
1-way

0.09 ¢

0.08 ¢

0.07 2-way

0.06 - 4-way

Missrate 005 |

per type
0.04 ¢

0.03 -

0.02 1

Capaci
0.01 a Compulsory

0.00 ‘ ' — :

! 8 16 32 64 128 256 512 1024
Cache size (KB)

Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 2011

Sequential Logic Design
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Miss Rate Trends

-
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A
0% | ¥ — | 256K
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Block size

*Bigger blocks reduce compulsory misses
*Bigger blocks increase conflict misses
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Multilevel Caches

eLarger caches have lower miss rates, longer
access times

*Expand memory hierarchy to multiple levels of
caches

eLevel 1: small and fast (e.g. 16 KB, 1 cycle)
*Level 2: larger and slower (e.g. 256 KB, 2-6
cycles)

*Most modern PCs have L1, L2, and L3 cache

Sequential Logic Design
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Virtual Memory

*Gives the illusion of bigger memory

*Main memory (DRAM) acts as cache for hard
disk

Sequential Logic Design
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Memory Hierarchy

Technology | Price / GB Access Bandwidth

A Time (ns) (GB/s)
/\ SRAM $10,000 1 25+
Cache
DRAM $10 10 - 50 10
Main Memory

SSD $1 100,000 0.5
HDD $0.1 10,000,000 0.1
Virtual Memory
»

Capacity

Speed

*Physical Memory: DRAM (Main Memory)
*Virtual Memory: Hard drive
-Slow, Large, Cheap

Sequential Logic Design
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Sequential Logic Design
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Hard Disk

Magnetic
Disks

Read/Write
Head

Takes milliseconds to seek correct location on disk




Virtual Memory

*Virtual addresses
—Programs use virtual addresses
—Entire virtual address space stored on a hard drive
—Subset of virtual address data in DRAM
—CPU translates virtual addresses into physical addresses
(DRAM addresses)
—Data not in DRAM fetched from hard drive

*Memory Protection
—Each program has own virtual to physical mapping
—Two programs can use same virtual address for different data
—Programs don’t need to be aware others are running
—One program (or virus) can’t corrupt memory used by another

Sequential Logic Design
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Q
Q Cache Virtual Memory
Q Block Page
-y
g Block Size Page Size
: Block Offset Page Offset
S
o Miss Page Fault
§ Tag Virtual Page Number
=
(o
U
V)
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Virtual Memory Definitions

*Page size: amount of memory transferred from
hard disk to DRAM at once

*Address translation: determining physical
address from virtual address

*Page table: lookup table used to translate
virtual addresses to physical addresses

Sequential Logic Design
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Virtual & Physical Addresses

Virtual Addresses Address Translation

Physical Addresses

Physical Memory

Hard Disk

© 2007 Elsevier, Inc. All rights reserved

Most accesses hit in physical memory
But programs have the large capacity of virtual memory

Sequential Logic Design
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Address Translation

Virtual Address
302928 ... 14 1312 11109 .. 210

VPN Page Offset
119
( Translation ) £12
{15 L
PPN Page Offset

26 25 24 .. 1312 11109 .. 210
Physical Address

Sequential Logic Design

B2

: ggln'
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Virtual Memory Example

*System:
—Virtual memory size: 2 GB = 23! bytes
—Physical memory size: 128 MB = 2%/ bytes
—Page size: 4 KB = 22 bytes

Sequential Logic Design
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Virtual Memory Example

*System:
—Virtual memory size: 2 GB = 23! bytes
—Physical memory size: 128 MB = 2?7 bytes
—Page size: 4 KB = 2*? bytes

*Organization:
—Virtual address: 31 bits
—Physical address: 27 bits
—Page offset: 12 bits
—# Virtual pages = 231/212 =219 (VPN = 19 bits)
—# Physical pages = 2%7/212 = 213 (PPN = 15 bits)

Sequential Logic Design
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Virtual Memory Example

Virtual

cr - Page
*19-bit virtual page numbers Virtual Addresses ~ Number
*15-bit physical page numbers 0x7FFFF000 - 0x7FFFFFFF | 7FFFF

0x7FFFE000 - 0x7FFFEFFF | 7FFFE
0x7FFFDO000 - 0x7FFFDFFF | 7FFFD
0x7FFFC000 - 0x7FFFCFFF | 7FFFC
0x7FFFB000 - 0x7FFFBFFF | 7FFFB
0x7FFFAQ00 - Ox7FFFAFFF | 7FFFA
0x7FFF9000 - Ox7FFFOFFF_| 7FFF9

Sequential Logic Design

Physical S .
Page . :
Number — Physical Addresses 0x00006000 - 0XO0006FFF | 00006
7FFF | OX7FFFO00 - OX7FFFFFF 0x00005000 - 0xO0005FFF | 00005
7FFE | OX7FFEQOQO - OX7FFEFFF 0x00004000 - Ox00004FFF | 00004
4 . 0x00003000 - OxO0003FFF | 00003
o o 0x00002000 - Ox00002FFF | 00002
0001 | Ox0001000 - OX0O001FFF 0x00001000 - Ox00001FFF | 00001
0000 | Ox0000000 - OXO000FFF 0x00000000 - OXO0000FFF | 00000
Physical Memory Virtual Memory

© 2007 Elsevier, Inc. All rights reserved
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Virtual Memory Example

-

.9 Virtual
7)) Page
Y \Whatis the physical address Virtual Addresses ___ Number
Q .. , Ox7FFFF000 - OX7FFFFFFF | 7FFFF
O of virtual address 0x247C: Ox7FFFE000 - OX7FFFEFFF | 7FFFE

-~ 0x7FFED000 - 0x7FFFDFEF | 7FFFD
o) 0x7FFFC000 - 0x7FFFCFFF | 7FFFC
o 0x7FFFB000 - Ox7FFFBFFF | 7FFFB
-~ O0x7FFFAQ00 - Ox7FFFAFFFE | 7FFFA

— Physical Ox7FFF9000 - Ox7FFFOFFF | 7FFF9
S Page . .

'.B Number — Physical Addresses 0x00006000 - 0xO0006FFF | 00006
'~ 7FFF [Ox7FFF000 - OX/FFFFFF 0x00005000 - 0X00005FFF | 00005
Q 7FFE [ Ox7FFEQ00 - Ox7FFEFFF 0x00004000 - 0x00004FFF_| 00004
= ; : 0x00003000 - 0x00003FFF | 00003

: 5 0x00002000 - 0x00002FFF _| 00002

o 0001 [ 0x0001000 - 0x0001FFF 0x00001000 - 0x00001FFF_| 00001

Q 0000 |_0x0000000 - OX0000FFF 0x00000000 - 0xX00000FFF_| 00000
¥ Physical Memory Virtual Memory

© 2007 Elsevier, Inc. All rights reserved
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Virtual Memory Example

&
()]
® oy
‘6 What is the physical address Virtual
of virtual address 0x247C? Page
Q _VPN = Ox2 Virtual Addresses Number
(@) —VPN 0x2 maps to PPN Ox7FFF Ox7FFFF000 - OX7FFFFFFF | 7FFFF
e —12-bit page offset: O0x47C Ox7FFFEQQ0 - Ox7FFFEFFF 7FFFE
OV _physical address = OX7FFF47C 0x7FFFD000 - 0x7FFFDFFF | 7FFFD
(@) 0x7FFFCO000 - 0x7FFFCFFF | 7FFFC
~—) Ox7FFFB000 - 0x7FFFBFFF | 7FFFB
— 0x7FFFAQ00 - Ox7FFFAFFF | 7FFFA
T Physical OX7FFF9000 - 0x7FFF9FFF | 7FFF9
'.B Page E E
¢ Number  Physical Addresses 0x00006000 - 0X00006FFF | 00006
Q 7FFF | OX7FFF000 - OX7FFFFFF 0x00005000 - 0XO0005FFF | 00005
: 7FFE | OX7FFEOQO - OX7FFEFFF 0x00004000 - Ox0O0004FFF | 00004
c. : e 0x00003000 - 0xO0003FFF | 00003
Q . e 0x00002000 - 0x00002FFF | 00002
0001 | Ox0001000 - OXx0O001FFF 0x00001000 - Ox00001FFF | 00001
e 0000 | 0x0000000 - 0x0000FFF 0x00000000 - 0x00000FFF | 00000
Physical Memory Virtual Memory
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How to perform translation?

*Page table
—Entry for each virtual page

—Entry fields:
*Valid bit: 1 if page in physical memory
*Physical page number: where the page is located

Sequential Logic Design
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Page Table Example

.9 Virtual Page
m Virtual Page Number Offset
Q Address |_0X00002 [ 47C |
Q 19 12
u y PaPhysicaI
ge Number
IS :
o i
.o 1 0x0000
- VPN is index 1 Ox7FFE
. 0
—~— into page table 0 £
S : &
f : S
0 &
- 0 B
Q 1 0x0001
0
> 0
°~ —P 1 Ox7FFF
0
A ?
Hit 15 12
Physical
Addressl OX7FFF | 47C |
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Page Table Example 1

What is the physical Prysca

Vv Page Number
address of virtual 0

1 0x0000
address 0x5F20? 1 oxrFFE

0 =

s

0 g

1 0x0001

0

0

1 Ox7FFF

0

0

Sequential Logic Design
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Page Table Example 1

<
O
— Virtual Page
8 el | 0:00005 | F20 |
Q 19 12
Q What is the physical o P
© . ge Number
@y address of virtual 0
Q 1 0x0000
— address 0x5F207? 1] oxrrE
R -VPN =5 0 . s
-_g -Entry 5 in page table ; : o
Q=) YPN 5 => physical page oL
0
= -Physical address: T
o O0xIF20 8
m : | 15 12
m Hit
Zg’é‘:’;f: |_0x0001 | F20 |

¢ KL
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Virtual
Address
What 1s the physical
address of virtual
address 0x73E0?

Sequential Logic Design
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Page Table Example 2

Virtual Page
Page Number Offset

| 0x00007 | 3EO

Page Table

19
Physical
Vv Page Number
0
0
1 0x0000
1 OX7FFE
0
0
—P 0
0
1 0x0001
0
0
1 Ox7FFF
0
(|)
Hit s
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Page Table Example 2

S
.~ . a \élrtlfjanl] er Pa?:
8 A\Qgtrﬁs ~ 0x00007 | 3E0 ]
19

Q What 1s the physical .
'E " v PageyNumber
S address of virtual 0
O address 0x73E0? (1) 0x0000
:l VPN =7 (1) Ox7FFE )
.E -Entry 7 is invalid 0 ; 8
= -Vlrtltlla.l pageil ml.ISt 1‘be - ’ ;:-5
Q paged 1nto physica c1> o
g. memory from disk 0 >

0
Q (1) Ox7FFF
¥ 0

H|it s

¢ KL
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Page Table Challenges

*Page table is large
—usually located in physical memory

*Load/store requires 2 main memory accesses:
—one for translation (page table read)
—one to access data (after translation)

*Cuts memory performance in half
—Unless we get clever...

Sequential Logic Design
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Translation Lookaside Buffer (TLB)

Small cache of most recent translations
*Reduces # of memory accesses for most loads/
stores from2to 1

Sequential Logic Design
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TLB

*Page table accesses: high temporal locality
—Large page size, so consecutive loads/stores likely
to access same page

°TLB

—Small: accessed in < 1 cycle

—Typically 16 - 512 entries

—Fully associative

—> 99 % hit rates typical

—Reduces # of memory accesses for most loads/
storesfrom2to 1l

Sequential Logic Design
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Example 2-Entry TLB

Virtual Page
Virtual Page Number Offset

| 0x00002 | 47C |

.~
O
Q Address
19 12

(@) Entry 1 Entry O
-y | ] |
m Virtual Physical Virtual Physical

VvV Page Number Page Number v Page Number Page Number
O 1] Ox7FFFD | 0x0000 |1] 0x00002 | Ox7FFF |TLB
= Y19 15 19 15
—
.E §
g Hit, Hit, B - Hit,
3 _ Physical 15 12
QL Hit Address __OXTFFE [ 47C |
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*Mu
*Eac
*Eac

Sequential Logic Design

Memory Protection

tiple processes (programs) run at once
N process has its own page table

N process can use entire virtual address

space
*A process can only access physical pages
mapped in its own page table
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Virtual Memory Summary

*Virtual memory increases capacity

*A subset of virtual pages in physical memory
*Page table maps virtual pages to physical pages
— address translation

*A TLB speeds up address translation

*Different page tables for different programs
provides memory protection

Sequential Logic Design
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