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Chapter	6	::	Topics	

•  Introduc(on	(done)	
•  Assembly	Language	(done)	
•  Machine	Language	(done)	
•  Programming	(done)	
•  Addressing	Modes	(done)	
•  Lights,	Camera,	Ac(on:	Compiling,	
Assembling,	&	Loading	(done)	

•  Odds	and	Ends	(now)	

The image cannot be displayed. Your computer may not have 
enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If 
the red x still appears, you may have to delete the image and 
then insert it again.
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•  Unscheduled function call to exception 
handler 

•  Caused by: 
–  Hardware, also called an interrupt, e.g., keyboard 
–  Software, also called traps, e.g., undefined instruction 

•  When exception occurs, the processor: 
–  Records the cause of the exception 
–  Jumps to exception handler (at instruction address 

0x80000180) 
–  Returns to program 

ExcepAons	
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•  Not	part	of	register	file	
– Cause:	Records	cause	of	excepAon	
– EPC	(ExcepAon	PC):	Records	PC	where	excepAon	
occurred	

•  EPC	and	Cause:	part	of	Coprocessor	0	
•  Move	from	Coprocessor	0	
– mfc0 $k0, EPC 
– Moves	contents	of	EPC	into	$k0 

 

 
 
 

ExcepAon	Registers	
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Exception Cause 
Hardware Interrupt 0x00000000 

System Call 0x00000020 

Breakpoint / Divide by 0 0x00000024 

Undefined Instruction 0x00000028 

Arithmetic Overflow 0x00000030 

 
 
 

ExcepAon	Causes	
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•  Processor saves cause and exception PC in Cause 
and EPC 

•  Processor jumps to exception handler (0x80000180) 
•  Exception handler: 

–  Saves registers on stack 
–  Reads Cause register 
  mfc0 $k0, Cause 

–  Handles exception 
–  Restores registers 
–  Returns to program 

mfc0 $k0, EPC 

jr $k0 

ExcepAon	Flow	



Chapter	6	<7>		

Digital	Design	and	Computer	Architecture,	2nd	Edi(on	
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Chapter	7	::	Topics	

•  Introduc(on	(done)	
•  Performance	Analysis	(done)	
•  Single-Cycle	Processor	(done)	
•  Mul(cycle	Processor	(done)	
•  Pipelined	Processor	(done)	
•  Excep(ons	(now)	
•  Advanced	Microarchitecture	(later)	
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•  Unscheduled function call to exception handler 
•  Caused by: 

–  Hardware, also called an interrupt, e.g. keyboard 
–  Software, also called traps, e.g. undefined instruction 

•  When exception occurs, the processor: 
–  Records cause of exception (Cause register) 
–  Jumps to exception handler (0x80000180) 
–  Returns to program (EPC register) 

Review:	ExcepAons	
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Example	ExcepAon	
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•  Not	part	of	register	file	
–  Cause 
•  Records	cause	of	excepAon	
•  Coprocessor	0	register	13	

–  EPC	(ExcepAon	PC)	
•  Records	PC	where	excepAon	occurred	
•  Coprocessor	0	register	14	

•  Move	from	Coprocessor	0	
–  mfc0 $t0, Cause 
– Moves	contents	of	Cause	into	$t0 

 
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file 
again. If the red x still appears, you may have to delete the image and then insert it again.

 
 
 

ExcepAon	Registers	
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Exception Cause 
Hardware Interrupt 0x00000000 

System Call 0x00000020 

Breakpoint / Divide by 0 0x00000024 

Undefined Instruction 0x00000028 

Arithmetic Overflow 0x00000030 

 
 
 

Extend	mul(cycle	MIPS	processor	to	handle	last	
two	types	of	excep(ons	

ExcepAon	Causes	
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ExcepAon	Hardware:	EPC	&	Cause 
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Control	FSM	with	ExcepAons	
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ExcepAon	Hardware:	mfc0 
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