
Chapter	6	<1>		

Digital	Design	and	Computer	Architecture,	2nd	Edi(on	

Chapter	6	

David	Money	Harris	and	Sarah	L.	Harris	

Chapter	6	<2>		

Chapter	6	::	Topics	

•  Introduc(on	(done)	
•  Assembly	Language	(done)	
•  Machine	Language	(done)	
•  Programming	(done)	
•  Addressing	Modes	(done)	
•  Lights,	Camera,	Ac(on:	Compiling,	
Assembling,	&	Loading	(done)	

•  Odds	and	Ends	(now)	

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have been
corrupted. Restart your computer, and then open the file again. If
the red x still appears, you may have to delete the image and
then insert it again.

Chapter	6	<3>		

•  Unscheduled function call to exception
handler

•  Caused by:
–  Hardware, also called an interrupt, e.g., keyboard
–  Software, also called traps, e.g., undefined instruction

•  When exception occurs, the processor:
–  Records the cause of the exception
–  Jumps to exception handler (at instruction address

0x80000180)
–  Returns to program

ExcepAons	

Chapter	6	<4>		

•  Not	part	of	register	file	
– Cause:	Records	cause	of	excepAon	
– EPC	(ExcepAon	PC):	Records	PC	where	excepAon	
occurred	

•  EPC	and	Cause:	part	of	Coprocessor	0	
•  Move	from	Coprocessor	0	
– mfc0 $k0, EPC
– Moves	contents	of	EPC	into	$k0

ExcepAon	Registers	

Chapter	6	<5>		

Exception Cause
Hardware Interrupt 0x00000000

System Call 0x00000020

Breakpoint / Divide by 0 0x00000024

Undefined Instruction 0x00000028

Arithmetic Overflow 0x00000030

ExcepAon	Causes	

Chapter	6	<6>		

•  Processor saves cause and exception PC in Cause
and EPC

•  Processor jumps to exception handler (0x80000180)
•  Exception handler:

–  Saves registers on stack
–  Reads Cause register
 mfc0 $k0, Cause

–  Handles exception
–  Restores registers
–  Returns to program

mfc0 $k0, EPC

jr $k0

ExcepAon	Flow	

Chapter	6	<7>		

Digital	Design	and	Computer	Architecture,	2nd	Edi(on	

Chapter	7	

David	Money	Harris	and	Sarah	L.	Harris	

Chapter	6	<8>		

Chapter	7	::	Topics	

•  Introduc(on	(done)	
•  Performance	Analysis	(done)	
•  Single-Cycle	Processor	(done)	
•  Mul(cycle	Processor	(done)	
•  Pipelined	Processor	(done)	
•  Excep(ons	(now)	
•  Advanced	Microarchitecture	(later)	

Chapter	6	<9>		

•  Unscheduled function call to exception handler
•  Caused by:

–  Hardware, also called an interrupt, e.g. keyboard
–  Software, also called traps, e.g. undefined instruction

•  When exception occurs, the processor:
–  Records cause of exception (Cause register)
–  Jumps to exception handler (0x80000180)
–  Returns to program (EPC register)

Review:	ExcepAons	

Chapter	6	<10>		

Example	ExcepAon	

Chapter	6	<11>		

•  Not	part	of	register	file	
–  Cause
•  Records	cause	of	excepAon	
•  Coprocessor	0	register	13	

–  EPC	(ExcepAon	PC)	
•  Records	PC	where	excepAon	occurred	
•  Coprocessor	0	register	14	

•  Move	from	Coprocessor	0	
–  mfc0 $t0, Cause
– Moves	contents	of	Cause	into	$t0

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file
again. If the red x still appears, you may have to delete the image and then insert it again.

ExcepAon	Registers	

Chapter	6	<12>		

Exception Cause
Hardware Interrupt 0x00000000

System Call 0x00000020

Breakpoint / Divide by 0 0x00000024

Undefined Instruction 0x00000028

Arithmetic Overflow 0x00000030

Extend	mul(cycle	MIPS	processor	to	handle	last	
two	types	of	excep(ons	

ExcepAon	Causes	

Chapter	6	<13>		

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0
1

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

<<2

25:0 (jump)

31:28

27:0

PCJump

00
01
10
11

0x8000 0180

Overflow

CLK

EN

EPCWrite

CLK

EN

CauseWrite

0
1

IntCause

0x30

0x28
EPC

Cause

ExcepAon	Hardware:	EPC	&	Cause

Chapter	6	<14>		

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00

IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 00
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW
Op = SW

RegDst = 0
MemtoReg = 01

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
MemtoReg = 00

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

Overflow Overflow
S13:

Overflow
PCSrc = 11

PCWrite
IntCause = 0
CauseWrite
EPCWrite

Op = others

PCSrc = 11
PCWrite

IntCause = 1
CauseWrite
EPCWrite

S12: Undefined

RegDst = 0
Memtoreg = 10

RegWrite

Op = mfc0

S14: MFC0

Control	FSM	with	ExcepAons	

Chapter	6	<15>		

ExcepAon	Hardware:	mfc0

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1PC 0

1

PC' Instr 25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg1:0 ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

00
01

Data

CLK

CLK

A
B 00

01
10
11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

<<2

25:0 (jump)

31:28

27:0

PCJump

00
01
10
11

0x8000 01 80

CLK

EN

EPCWrite

CLK

EN

CauseWrite

0
1

IntCause

0x30
0x28

EPC

Cause

Overflow

...
01101

01110

...
15:11

10

C0

