

Logic Gates

- **Perform logic functions:**
	- $-$ inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
	- NOT gate, buffer
- **Two-input:**
	- $-$ AND, OR, XOR, NAND, NOR, XNOR
- **Multiple-input**

Single-Input Logic Gates

NOT

 $Y = \overline{A}$

BUF

Y = A A Y \bigcirc 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Single-Input Logic Gates

NOT

 $Y = \overline{A}$

BUF

© Digital Design and Computer Architecture, 2nd Edition, 2012

Two-Input Logic Gates

AND *Y = AB A B Y* $\begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix}$ 0 1 1 0 1 1 *A* $\begin{array}{c} B \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ Y

OR

Y = A + B

Two-Input Logic Gates

AND *Y = AB A B Y* 0 0 0 0 1 0 $1 \quad 0 \mid 0$ 1 1 1 *A* $\begin{array}{c} B \end{array}$ $\begin{array}{c} \begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ Y

OR

Y = A + B

© Digital Design and Computer Architecture, 2nd Edition, 2012

More Two-Input Logic Gates

1 1

A B Y

1

0 0

 $\begin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array}$

1 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

More Two-Input Logic Gates

 $Y = A \oplus B$ $Y = \overline{AB}$ $Y = \overline{A + B}$

A B Y

0 0 1

 $\begin{array}{ccc|c} 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$ 1 1 0

 $1 \mid 0$

1 1

1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Multiple-Input Logic Gates

NOR3 *Y = A+B+C B C Y* 0 0 0 1 1 0 1 1 *A B* - *) Y C A* \bigcap $\left(\right)$ 0 Ω 0 0 0 1 1 0 1 1 1 1 1 1

AND4 *Y = ABCD A B ^C Y D B C Y* 0 0 0 1 1 0 1 1 *A* \bigcap Ω $\overline{0}$ Ω 0 0 0 1 1 0 1 1 1

© Digital Design and Computer Architecture, 2nd Edition, 2012

1 1

1

Multiple-Input Logic Gates

NOR3 *Y = A+B+C B C Y* 0 0 0 1 1 0 1 1 *A B D Y C A* \bigcap 0 \cap Ω 0 0 0 1 1 0 1 1 1 1 1 1 1 \bigcap \bigcap Ω Ω Ω $\overline{0}$ $\overline{0}$ **AND4** *Y = ABCD A B ^C Y D B C Y* $0 \qquad 0$ 0 1 1 0 1 1 *A* \bigcirc 0 0 \bigcirc 0 0 0 1 1 0 1 1 1 1 1 1 \bigcap \bigcirc \bigcirc \bigcap $\overline{0}$ 0 Ω 1

• Multi-input XOR: Odd parity

Chapter 2 :: Topics

- **Introduction**
- **Boolean Equations**
- **Boolean Algebra**
- **From Logic to Gates**
- **Multilevel Combinational Logic**
- **X's and Z's, Oh My**
- **Karnaugh Maps**
- **Combinational Building Blocks**
- **Timing**

Introduction

A logic circuit is composed of:

- **Inputs**
- **Outputs**
- Functional specification
- Timing specification

Circuits

- **Nodes**
	- $-$ Inputs: A, B, C
	- $-$ Outputs: Y, Z
	- Internal: n1
- Circuit elements
	- $E1, E2, E3$
	- Each a circuit

Types of Logic Circuits

Combinational Logic

- Memoryless
- $-$ Outputs determined by current values of inputs

Sequential Logic

- Has memory
- $-$ Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects
	- The circuit contains no cyclic paths

Boolean Equations

- Functional specification of outputs in terms of inputs
- **Example:** $S = F(A, B, C_{in})$ $C_{\text{out}} = F(A, B, C_{\text{in}})$ $\begin{array}{ccc} A & - & C \\ D & G & -S \end{array}$

Some Definitions

- Complement: variable with a bar over it A, B, C
- Literal: variable or its complement
	- *A***,** *A***,** *B***,** *B***,** *C***,** *C*
	- Implicant: product of literals *ABC***,** *AC***,** *BC*
	- Minterm: product that includes all input variables

*ABC***,** *ABC***,** *ABC*

Maxterm: sum that includes all input variables *(A+B+C)***,** *(A+B+C)***,** *(A+B+C)*

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
	- Thus, a sum (OR) of products (AND terms)

$$
Y = \mathbf{F}(A, B) =
$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
	- Thus, a sum (OR) of products (AND terms)

 $Y = F(A, B) =$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
	- Thus, a sum (OR) of products (AND terms)

 $Y = F(A, B) = AB + AB = \Sigma(1, 3)$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

 t torrection: $not(A)$ + Φ apter 1 <20>

Boolean Equations Example

- You are going to the cafeteria for lunch
	- $-$ You won't eat lunch (E)
	- $-$ If it's not open (O) or
	- $-$ If they only serve corndogs (C)
- Write a truth table for determining if you will eat lunch (E).

$$
\begin{array}{c|c}\n & C & E \\
0 & 0 & \\
0 & 1 & \\
1 & 0 & \\
1 & 1 & \\
\end{array}
$$

Boolean Equations Example

- You are going to the cafeteria for lunch
	- You won't eat lunch (E: "will eat")
	- $-$ If it's not open (O: "it's open") or
	- $-$ If they only serve corndogs (C: "corndogs only")
- Write a truth table for determining if you will eat lunch (E).

$$
\begin{array}{c|c}\n & C & E \\
\hline\n0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0\n\end{array}
$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

SOP & POS Form

SOP – sum-of-products

POS - product-of-sums

SOP & POS Form

SOP – sum-of-products

$$
Y = OC
$$

= $\Sigma(2)$

POS - product-of-sums

Y = $(O + C)(O + \overline{C})(\overline{O} + \overline{C})$ $= \Pi(0, 1, 3)$

Boolean Algebra

- Axioms and theorems to **simplify** Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
	- **Duality** in axioms and theorems:
		- $-$ ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

© Digital Design and Computer Architecture, 2nd Edition, 2012

T1: Identity Theorem

© Digital Design and Computer Architecture, 2nd Edition, 2012

 $B \cdot 1 = B$

Chapter 1<27>

Chapter 1 <28>

T2: Null Element Theorem

• $B \cdot 0 = 0$

• $B + 1 = 1$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <29>

T3: Idempotency Theorem

- $B \cdot B = B$
- $B + B = B$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1<31>

 $B = B$

T4: Identity Theorem

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1<33>

Chapter 1 <35>

Boolean Theorems Summary

Boolean Theorems of Several

© Digital Design and Computer Architecture, 2nd Edition, 2012

FO

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1<39>

Simplifying Boolean Equations

Example 1:

- $Y = AB + AB$
	- $= B(A + A)$ T8
	- $= B(1)$ T5'
	- $=$ *B* T1

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1<41>

© Digital Design and Computer Architecture, 2nd Edition, 2012

 \mathbf{L}

FFE

Chapter 1 <42>

DeMorgan's Theorem

 $Y = AB = A + B$

• $Y = A + B = A \cdot B$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <43>

Bubble Pushing

• **Backward:**

- Body changes
- Adds bubbles to inputs

• **Forward:**

- Body changes
- $-$ Adds bubble to output

Bubble Pushing

What is the Boolean expression for this circuit?

Bubble Pushing

What is the Boolean expression for this circuit?

 $Y = AB + CD$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter $1 < 46$

Bubble Pushing Rules

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <48>

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <49>

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter $1 < 51$

From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + \overline{ABC} + \overline{ABC}$

Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
	- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
	- Wires crossing *without* a dot make no connection

Multiple-Output Circuits

C iIR C UIT

Multiple-Output Circuits

Example: Priority Circuit Output asserted corresponding to most significant **TRUE** input

Priority Circuit Hardware

Don't Cares

Contention: X

- Contention: circuit tries to drive output to 1 and 0
	- $-$ Actual value somewhere in between
	- $-$ Could be 0, 1, or in forbidden zone
	- $-$ Might change with voltage, temperature, time, noise
	- $-$ Often causes excessive power dissipation

- $-$ Contention usually indicates a **bug**.
- $-$ **X** is used for "don't care" and contention look at the context to tell them apart

Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be $0, 1$, or somewhere in between
	- A voltmeter won't indicate whether a node is floating

Tristate Busses

- Floating nodes are used in tristate busses processor en1
	- Many different drivers
	- $-$ Exactly one is active at once

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

$$
\bullet \ \ P A + P \overline{A} = P
$$

K-Map

I

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

3-Input K-Map

3-Input K-Map

 $Y = \overline{AB} + \overline{BC}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

1 0

 $\begin{array}{ccc|c} 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}$

0 0 0

 $\begin{array}{ccc|c} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$ $\begin{array}{ccc|c} 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$

1 1 **1**

Chapter $1 < 65$

K-Map Definitions

- **Complement:** variable with a bar over it A, B, C
- **Literal:** variable or its complement
	- \overline{A} *,* \overline{A} *,* \overline{B} *,* \overline{B} *,* \overline{B} *,* \overline{C} *,* \overline{C}
	- **Implicant:** product of literals *ABC***,** *AC***,** *BC*
	- **Prime implicant:** implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
	- Each circle must be as large as possible
		- A circle may wrap around the edges
	- A "don't care" (X) is circled only if it helps minimize the equation

4-Input K-Map

4-Input K-Map

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter $1 < 69$

C D $0\qquad 0$ 1 0 1 *B* $\overline{0}$ 0 1 0 1 *A Y* \overline{O} 0 1 0 1 Ω 0 $\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix}$ $\begin{array}{ccc} 1 & 0 \\ 1 & 1 \end{array}$ 1

4-Input K-Map

K-Maps with Don't Cares

 $\overline{}$

C D 0 1 0 1 *B* $\overline{0}$ Ω 0 1 0 X *A Y* \bigcap Ω Ω

1

K-Maps with Don't Cares

X X X X X X

 Ω

C D 0 1 0 1 *B* Ω 0 1 0 1 X *A Y* በ \bigcap Ω Ω 0 1 0 1 Ω 0 1 0 1 X X X X X X

K-Maps with Don't Cares

Combinational Building Blocks

- Multiplexers
- **Decoders**

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter $1 < 74$

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- $log₂N$ -bit select input control input
	- **Example:** 2:1 Mux

Multiplexer Implementations

Logic gates

- Sum-of-products form

 $Y = D_0 \overline{S} + D_1 S$

• **Tristates**

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Logic using Multiplexers

• Using the mux as a lookup table

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <77>

Logic using Multiplexers

Reducing the size of the mux

Decoders

- *N* inputs, 2^{*N*} outputs
- One-hot outputs: only one output HIGH at once

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <79>

Decoder Implementation

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <80>

Logic Using Decoders

• OR minterms

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter $1 < 81$

Timing

- Delay between input change and output changing
- *A Y* • How to build fast circuits?

Propagation & Contamination Delay

- **Propagation delay:** t_{pd} = max delay from input to output
- *A Y* **Contamination delay:** t_{cd} = min delay from input to output

Propagation & Contamination Delay

- Delay is caused by
	- Capacitance and resistance in a circuit
	- Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
	- Different rising and falling delays
	- Multiple inputs and outputs, some of which are faster than others
	- Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths

Critical (Long) Path: $t_{pd} = 2t_{pd \text{ AND}} + t_{pd \text{ OR}}$ **Short Path:** $t_{cd} = t_{cd \text{ AND}}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <85>

Glitches

When a single input change causes multiple output changes

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <86>

Glitch Example

What happens when $A = 0$, $C = 1$, B falls?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <87>

Glitch Example (cont.)

Fixing the Glitch

Why Understand Glitches?

- Glitches don't cause problems because of **synchronous design** conventions (see Chapter 3)
- It's important to **recognize** a glitch: in simulations or on oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

