
Logic Gates

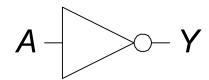
- Perform logic functions:
 - inversion (NOT), AND, OR, NAND, NOR, etc.
- Single-input:
 - NOT gate, buffer
- Two-input:
 - AND, OR, XOR, NAND, NOR, XNOR
- Multiple-input


Single-Input Logic Gates

NOT

$$Y = \overline{A}$$

BUF


$$Y = A$$

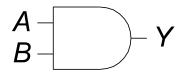
Α	Y
0	
1	


Single-Input Logic Gates

NOT

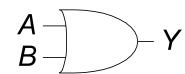
$$Y = \overline{A}$$

BUF


$$Y = A$$

Α	Y
0	0
1	1

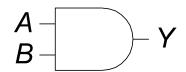
Two-Input Logic Gates


AND

$$Y = AB$$

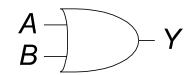
Α	В	Υ
0	0	
0	1	
1	0	
1	1	

OR


$$Y = A + B$$

_A	В	Y
0	0	
0	1	
1	0	
1	1	

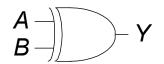
Two-Input Logic Gates


AND

$$Y = AB$$

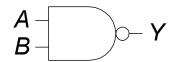
Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR


$$Y = A + B$$

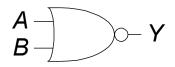
_ <i>A</i>	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

More Two-Input Logic Gates


XOR

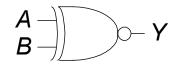
$$Y = A \oplus B$$

_ <i>A</i>	В	Υ
0	0	
0	1	
1	0	
1	1	


NAND

$$Y = \overline{AB}$$

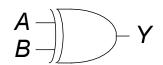
Α	В	Y
0	0	
0	1	
1	0	
1	1	


NOR

$$Y = \overline{A + B}$$

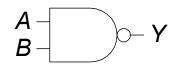
Α	В	Y
0	0	
0	1	
1	0	
1	1	

XNOR


$$Y = \overline{A + B}$$

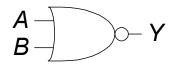
A	В	Y
0	0	
0	1	
1	0	
1	1	

More Two-Input Logic Gates


XOR

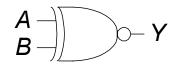
$$Y = A \oplus B$$

	Α	В	Y
•	0	0	0
	0	1	1
	1	0	1
	1	1	0


NAND

$$Y = \overline{AB}$$

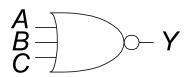
Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0


NOR

$$Y = \overline{A + B}$$

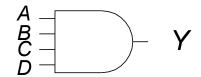
A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

XNOR


$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

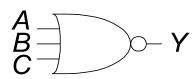
Multiple-Input Logic Gates


NOR3

$$Y = \overline{A+B+C}$$

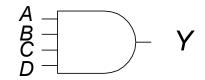
Α	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

AND4


$$Y = ABCD$$

Α	В	С	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiple-Input Logic Gates

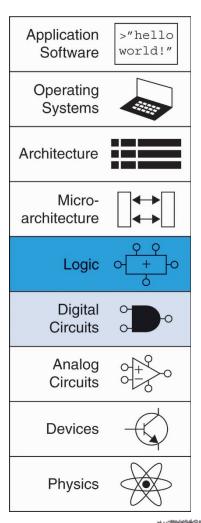

NOR3

$$Y = \overline{A + B + C}$$

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND4

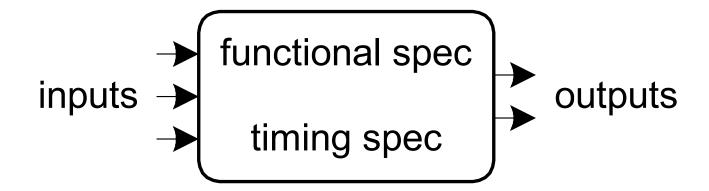
$$Y = ABCD$$


A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

• Multi-input XOR: Odd parity

Chapter 2 :: Topics

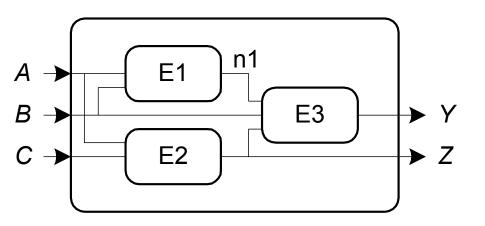
- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Blocks
- Timing



Introduction

A logic circuit is composed of:

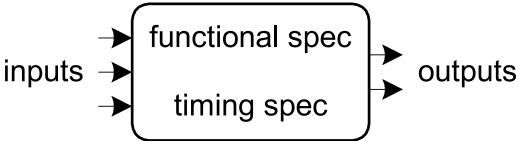
- Inputs
- Outputs
- Functional specification
- Timing specification



Circuits

Nodes

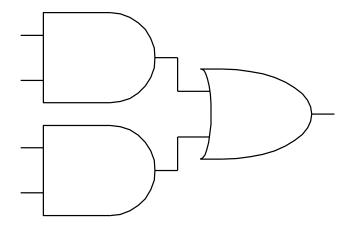
- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit


Types of Logic Circuits

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs

Sequential Logic


- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$

$$C_{\text{out}} = F(A, B, C_{\text{in}})$$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Complement: variable with a bar over it

Literal: variable or its complement

Implicant: product of literals

Minterm: product that includes all input variables

Maxterm: sum that includes all input variables

$$(A+B+C)$$
, $(\overline{A}+B+\overline{C})$, $(\overline{A}+B+C)$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

			_	minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	A B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	A B	m_1
1	0	0	$A \overline{B}$	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{AB} + AB = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
- Each row has a maxterm
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
$\overline{1}$	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(A + B) = \Pi(0, 2)$$

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E: "will eat")
 - If it's not open (O: "it's open") or
 - If they only serve corndogs (C: "corndogs only")

Write a truth table for determining if you will eat lunch (E).

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0		O C
0	1		<u> </u>
1	0		O C
1	1		ОС

• POS – product-of-sums

0	С	Y	maxterm
0	0		O + C
0	1		$O + \overline{C}$
1	0		O + C
1	1		$\overline{O} + \overline{C}$

SOP & POS Form

• SOP – sum-of-products

0	С	E	minterm
0	0	0	O C
0	1	0	O C
1	0	1	O C
1	1	0	O C

$$Y = OC$$

$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	O + C

$$Y = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$

= $\Pi(0, 1, 3)$

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - ANDs and ORs, 0's and 1's interchanged

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

T1: Identity Theorem

•
$$B \cdot 1 = B$$

•
$$B + 0 = B$$

T1: Identity Theorem

•
$$B \cdot 1 = B$$

•
$$B + 0 = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $= B$

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

T3: Idempotency Theorem

- $B \cdot B = B$
- $\bullet B + B = B$

T3: Idempotency Theorem

- $B \cdot B = B$
- $\bullet B + B = B$

$$B = B$$

$$B \rightarrow B \rightarrow B$$

T4: Identity Theorem

•
$$\mathbf{B} = \mathbf{B}$$

T4: Identity Theorem

$$\bullet \stackrel{\text{B}}{=} \text{B}$$

$$B \longrightarrow B \longrightarrow$$

T5: Complement Theorem

•
$$B \cdot B = 0$$

•
$$B + \overline{B} = 1$$

T5: Complement Theorem

•
$$B \cdot B = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B} - = 0$$

$$\frac{B}{B}$$
 $=$ 1

Boolean Theorems Summary

		Theorem		Dual	Name
Г	1	$B \bullet 1 = B$	T1'	B+0=B	Identity
Т	72	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Г	3	$B \bullet B = B$	T3'	B + B = B	Idempotency
Г	. 4		$\bar{\bar{B}} = B$		Involution
Г	5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several

ı	V	Theorem		Dual	Name
	T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
	T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
	T8	$(B \bullet C) + B \bullet D = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
4	T9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
	T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
	T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
	T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$	T12′	$ \overline{B_0} + \overline{B_1} + \overline{B_2} $ $ = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $	De Morgan's Theorem

Simplifying Boolean Equations

Example 1:

•
$$Y = AB + AB$$

ONE

Simplifying Boolean Equations

Example 1:

•
$$Y = AB + \overline{AB}$$

$$= B(A + \overline{A}) \quad T8$$

$$= B(1) \quad T5'$$

$$= B \quad T1$$

Simplifying Boolean Equations

Example 2:

• Y = A(AB + ABC)

Simplifying Boolean Equations

Example 2:

$$Y = A(AB + ABC)$$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

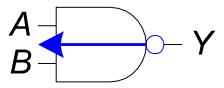
$$=A(AB)$$

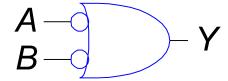
$$= (AA)B$$

$$=AB$$

DeMorgan's Theorem

$$\bullet \quad Y = AB = A + B$$

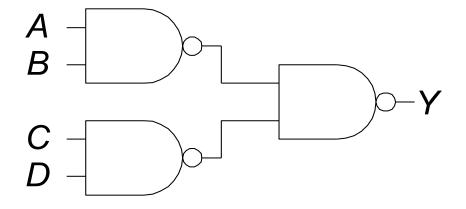

•
$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$



Bubble Pushing

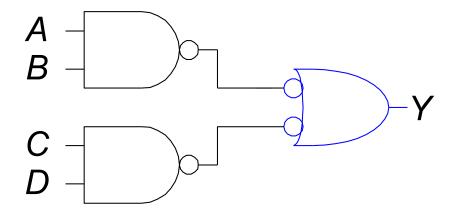
Backward:

- Body changes
- Adds bubbles to inputs


Forward:

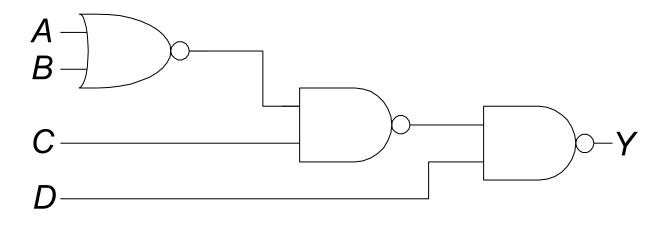
- Body changes
- Adds bubble to output

Bubble Pushing

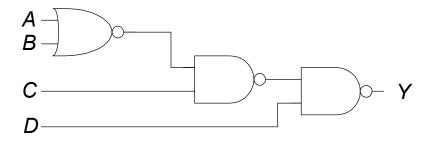

• What is the Boolean expression for this circuit?

Bubble Pushing

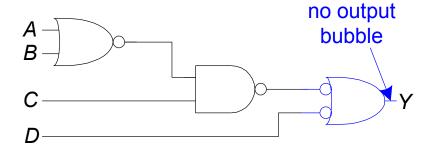
• What is the Boolean expression for this circuit?

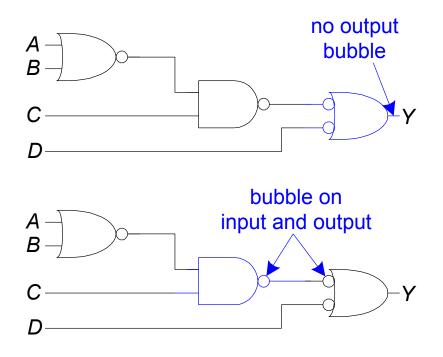


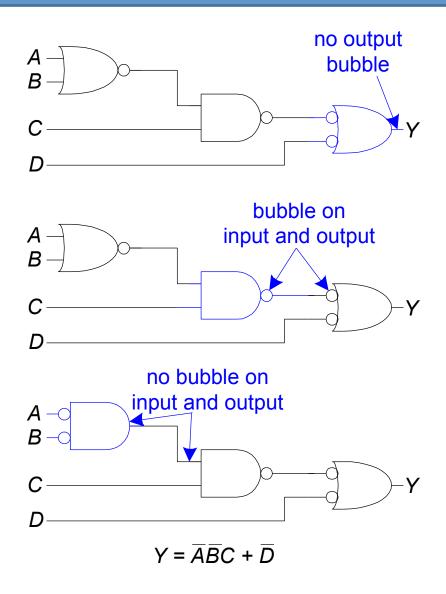
$$Y = AB + CD$$

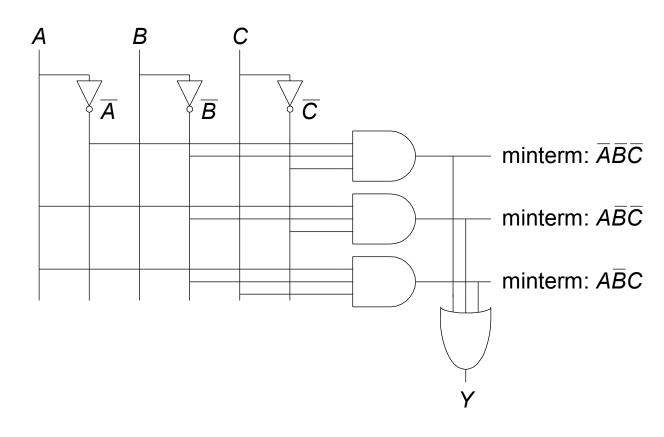


Bubble Pushing Rules


- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel







From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example: $Y = \overline{ABC} + A\overline{BC} + AB\overline{C}$

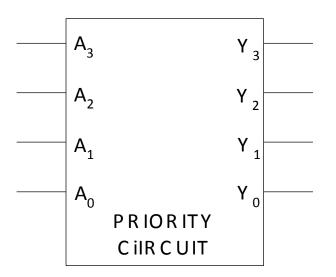
Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best

Circuit Schematic Rules (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

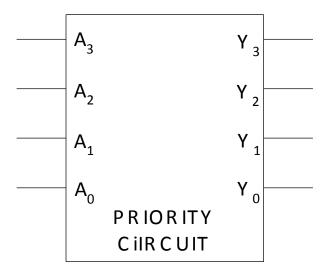
wires connect at a T junction wires connect at a dot


wires crossing without a dot do not connect

Multiple-Output Circuits

Example: Priority Circuit

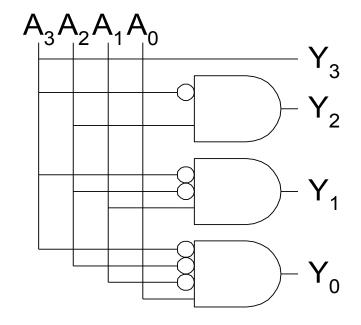
Output asserted corresponding to most significant TRUE input


	_	_	_	.,			
A_3	A_2	A_{1}	A_o	Υ ₃	Y 2	Y ₁	Υ 0
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0 0 0 0 0 0 0	1	1	1 0 1 0 1 0				
1	0	0	0				
1	0	0	0 1 0 1				
1	0	1	0				
$\overline{1}$	0	$\overline{1}$	1				
$\overline{1}$	1	0	0				
1	1	Ö	1				
1	1	1	0 1 0				
1	1	1	1				
Т.			1				

Multiple-Output Circuits

Example: Priority Circuit

Output asserted corresponding to most significant TRUE input



A_3	A_2	A_1	A_o	Y 3	Y_2	Y ₁	Y 0
0	0	0	0	0	0	0	0
0	0 0	0	1	0		0	1
0	0	1	0	0	0	1	0
0	0	1 1 0	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1 1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
0 0 0 0 0 0 0 1 1 1 1	1 1 0	1 1 0	0	1	1 1 1 0 0 0 0	0 0 1 1 0 0 0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0 0	1	1	1	0	0	0
1	1	0 1 1 0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	01010101010101	00000001111111	0	0 0 0 0 0	0
1	1	1	1	1	0	0	010000000000000000000000000000000000000
					_	_	_

Priority Circuit Hardware

A_3	A_2	A_{1}	A_o	Y 3	Y_2	Y ₁	Y_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	01010101010	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 0 0 1 0 0 1 1 0 0 1	0	000000011111111	Y ₂ 0 0 0 0 1 1 1 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

Don't Cares

A_3	A_2	A_1	A_0	Y 3	Y 2	Y_{1}	Y_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1	$egin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01010101010101	000000011111111	0000111100000000	0 0 1 1 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

A_3	A_2	A_{1}	A_o	Y 3	Y 2	Y ₁	Υ ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	X	0 0 0 0 1	0	0	0

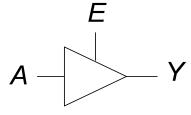
Contention: X

- Contention: circuit tries to drive output to 1 and 0
 - Actual value somewhere in between
 - Could be 0, 1, or in forbidden zone
 - Might change with voltage, temperature, time, noise
 - Often causes excessive power dissipation

$$A = 1 - Y = X$$

$$B = 0 - Y = X$$

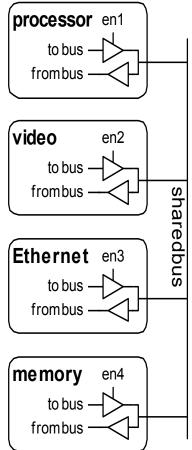
- Warnings:
 - Contention usually indicates a bug.
 - X is used for "don't care" and contention look at the context to tell them apart



Floating: Z

- Floating, high impedance, open, high Z
- Floating output might be 0, 1, or somewhere in between
 - A voltmeter won't indicate whether a node is floating

Tristate Buffer


E	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Tristate Busses

Floating nodes are used in tristate busses

- Many different drivers
- Exactly one is active at once

TO ONE

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically
- PA + PA = P

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Y AB								
c	00	01	11	10				
0	1	0	0	0				
1	1	0	0	0				

Y A	R			
C	00	01	11	10
0	ĀĒĈ	ĀBĈ	ABĈ	AĒĈ
1	ĀĒC	ĀBC	ABC	AĒC

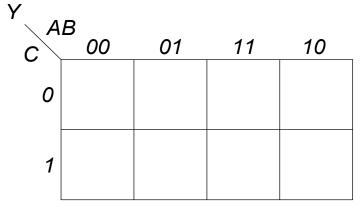
K-Map

- Circle 1's in adjacent squares
- In Boolean expression, include only literals whose true and complement form are *not* in the circle

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

YA	В			
C	00	01	11	10
0	1	0	0	0
1	1	0	0	0

$$Y = \overline{A}\overline{B}$$

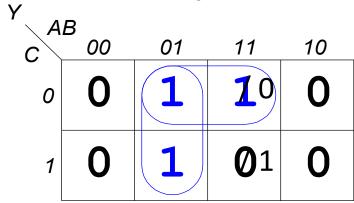


Y C	B 00	01	11	10
0	ABC	ĀBĒ	ABŌ	ABC
1	ĀĒC	ĀBC	ABC	AĒC

Truth Table

_ A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map



Y C	B 00	01	11	10
0	ABC	ĀBČ	ABŌ	ABC
1	ĀĒC	ĀBC	ABC	AĒC

Truth Table

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

K-Map

$$Y = \overline{A}B + B\overline{C}$$

K-Map Definitions

• Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}

Literal: variable or its complement

$$\bar{A}$$
, A , \bar{B} , B , C , \bar{C}

• Implicant: product of literals ABC, AC, BC

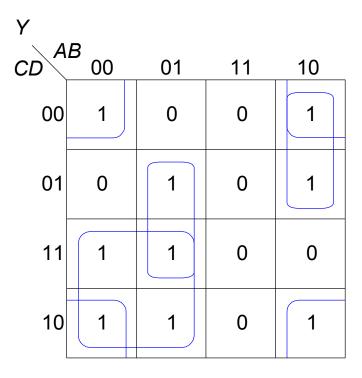
 Prime implicant: implicant corresponding to the largest circle in a K-map

K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2,
 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- A "don't care" (X) is circled only if it helps minimize the equation

Α	В	С	D	Y
0	0		0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1 1 1 0 0 0 0 1 1	0 0 1 0 0 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0	
1	1	1	1	0

Y CD A	В	04	4.4	40
00	00	01	11	10
00				
01				
11				
10				
10				



Α	В	С	D	Y
0	0	0	0	1
0	0 0	0	1	0
0	0	1	0	1
0	0	1	1	1
0		0	0	0
0	1 1 1 0 0	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1 1	0 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0	1 0 1 0 1 1 1 1 0 0 0 0
1	1	1	0	0
1	1	1	1	0

Υ				
CDA	B 00	01	11	10
00	1	0	0	1
01	0	1	0	1
11	1	1	0	0
10	1	1	0	1

Α	В	C	D	Y
0	0	0		1
0	0	0	1	0
0	0 0 0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1 1 1 0 0 0 0 1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
0 0 0 0 0 0 0 1 1 1 1 1 1	1	0 0 1 1 0 0 1 1 0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0 1	1 0 1 0 1 1 1 1 0 0 0 0
1	1	1	1	0

$$Y = \overline{A}C + \overline{A}BD + A\overline{B}\overline{C} + \overline{B}\overline{D}$$

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0		0	1	1 0
0	0 0 0		0	1
0	0	1 0 0 1 1 0 0	1 0 1 0 1 0 1 0 1 0	1
0	1	0	0	0
0	1 1 1 0 0	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	1 0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	1 1 1	1	0	1 0 X 1 1 1 X X X
1	1	1	1	X

Y CD A	B 00	01	11	10
00				
01				
11				
10				

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0		1 0
0	0		0	
0	0 0	1 1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	0 1 1 0	0	1
0	1	1	1	1
1	0	0	0	1
1	1 0 0 0	0	1	1
1	0	1	0	X
1	0	1 1 0	1 0 1 0 1 0 1 0 1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1	0	1 0 X 1 1 1 X X X
1	1	1	1	X

Υ						
CDA	B 00	01	11	10		
00	1	0	X	1		
01	0	X	X	1		
11	1	1	X	X		
10	1	1	X	Х		

K-Maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0			0	
0	0 0 1 1 1 1 0 0	1 0 0 1 1 0 0 1 1	1	1
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
0 0 0 0 0 0 0 1 1 1 1 1	0 1 1 1	1 1	0 1 0 1 0 1 0 1 0 1 0 1	1 1 0 X 1 1 1 X X X X
1	1	1	1	X

Y AB								
CD	00	01	11	10				
00	1	0	X	1				
01	0	X	X	1				
11	1	1	X	X				
10	1	1	X	X				

$$Y = A + \overline{BD} + C$$

Combinational Building Blocks

- Multiplexers
- Decoders

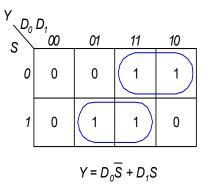
Multiplexer (Mux)

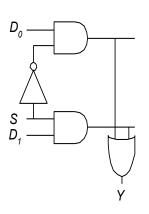
- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

$$D_0 - 0$$

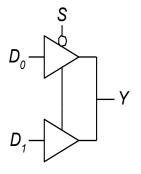
$$D_1 - 1$$


S	D_1	D_0	Y		S	Υ
0	0	0	0	-	0	D_0
0	0	1	1		1	D_0
0	1	0	0			•
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	1			
1	1	1	1			



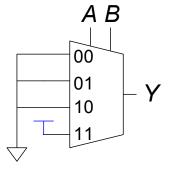
Multiplexer Implementations

Logic gates


Sum-of-products form

Tristates

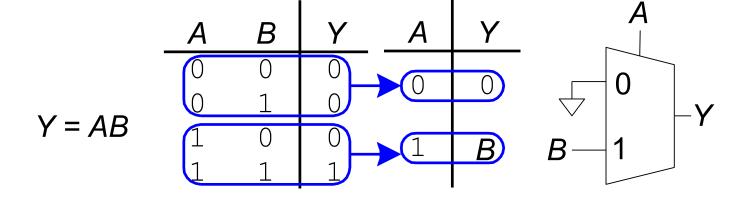
- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input



Logic using Multiplexers

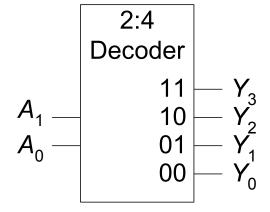
• Using the mux as a lookup table

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1


$$Y = AB$$

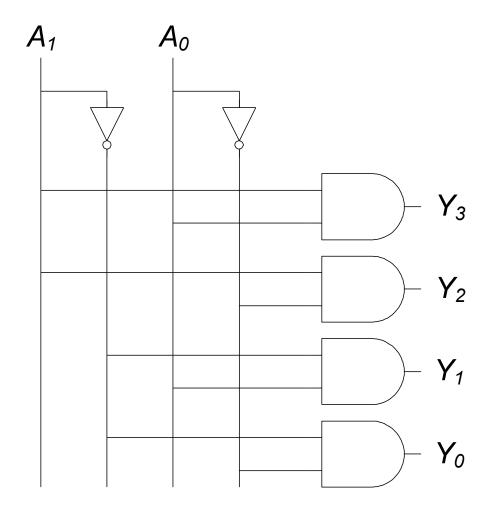
Logic using Multiplexers

• Reducing the size of the mux

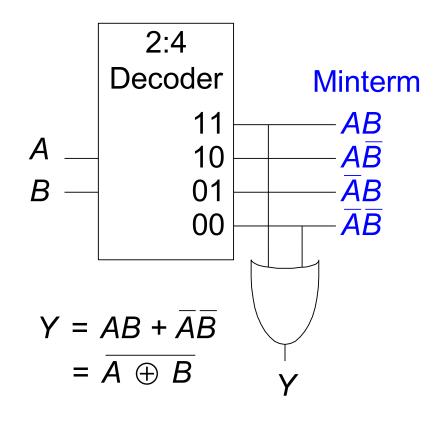


Decoders

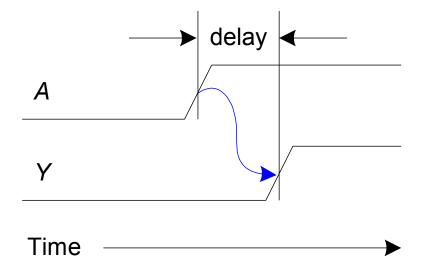
- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at


once

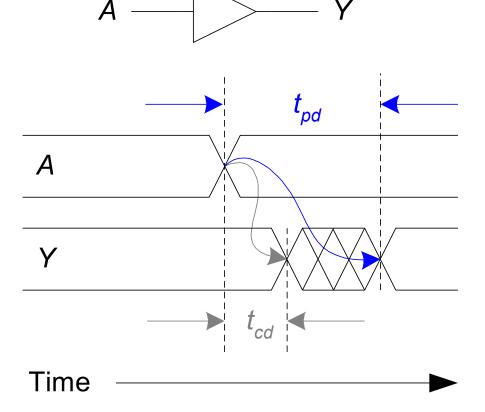
_A ₁	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0


Decoder Implementation

Logic Using Decoders

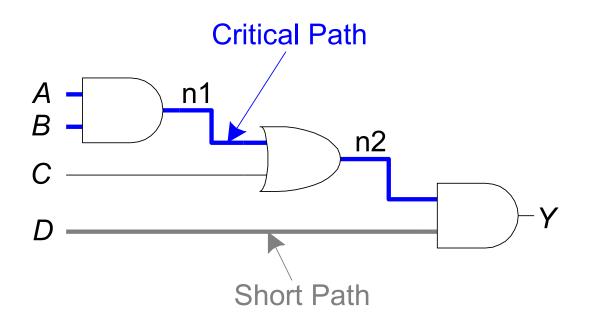

OR minterms

Timing


- Delay between input change and output changing
- How to build fast circuits?

Propagation & Contamination Delay

- **Propagation delay:** $t_{pd} = \max \text{ delay from input to output}$
- Contamination delay: t_{cd} = min delay from input to output



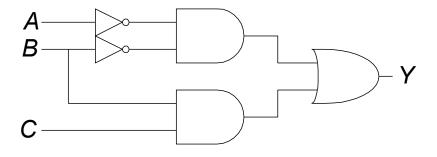
Propagation & Contamination Delay

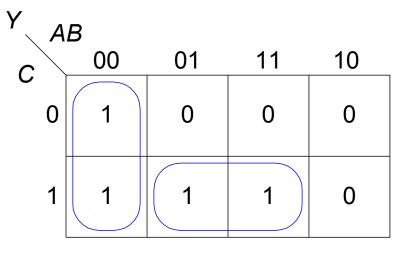
- Delay is caused by
 - Capacitance and resistance in a circuit
 - Speed of light limitation
- Reasons why t_{pd} and t_{cd} may be different:
 - Different rising and falling delays
 - Multiple inputs and outputs, some of which are faster than others
 - Circuits slow down when hot and speed up when cold

Critical (Long) & Short Paths

Critical (Long) Path:
$$t_{pd} = 2t_{pd_AND} + t_{pd_OR}$$

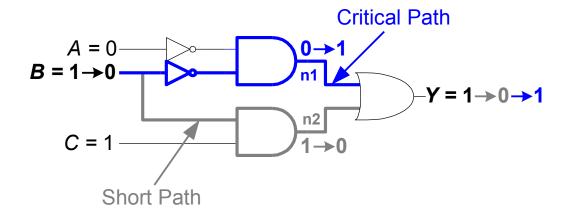
Short Path:
$$t_{cd} = t_{cd_AND}$$

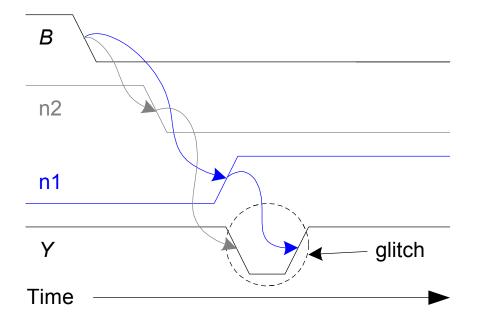

Glitches


When a single input change causes multiple output changes

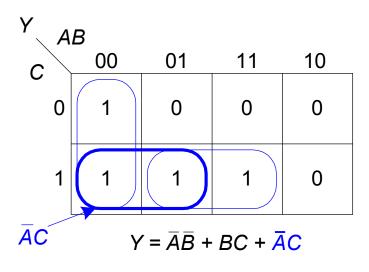
Glitch Example

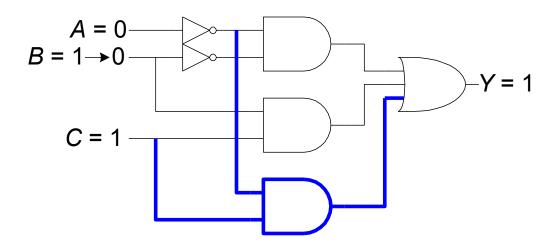
• What happens when A = 0, C = 1, B falls?





$$Y = \overline{A}\overline{B} + BC$$


Glitch Example (cont.)



Fixing the Glitch

Why Understand Glitches?

- Glitches don't cause problems because of synchronous design conventions (see Chapter 3)
- It's important to **recognize** a glitch: in simulations or on oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

