
MIPS Register Conventions
Following these conventions will allow you to call C functions (like printf() and atoi()) from your MIPS
code. They will also minimize the amount of code you need to push and pop registers on and off the stack.

• In general,

• Use $a0 .. $a3 for arguments.

• Use $v0 and $v1 for returns.

• $sp is always the stack pointer -- don't use it for anything else.

• $ra is always the return address -- don't use it for anything else.

• Use $t0 .. $t9 to compute intermediate expressions.

• Don't use $fp.
The order within each of the following clauses is the order in which you should use registers:

• If you're writing main():

1. Prefer using $s0 .. $s7 ("callee-saved", but you're not the callee).

2. If you use any $t0 .. $t9, push it on and pop it off the stack across function calls ("caller-saved", and
you're the caller).

• else if you're writing a "leaf" function (one that does not contain a jal):

1. Prefer using any $t0 .. $t9 ("caller-saved", and you're not a caller).

2. If you use any $s0 .. $s7, push it on the stack at the beginning of the function and pop it off the stack
before every return ("callee-saved", and you're a callee)

• else (you're writing a function that isn't main() and calls other functions):

1. Prefer using any $s0 .. $s7, but push it on the stack at the beginning of the function and pop it off
the stack before every return ("callee-saved", and you're a callee).

2. If you use any $t0 .. $t9, push it on and pop it off the stack across function calls if you want to
preserve it ("caller-saved", and you're a caller).

