MIPS Register Conventions

Following these conventions will allow you to call C functions (like pri ntf () and atoi ()) from your MIPS
code. They will also minimize the amount of code you need to push and pop registers on and off the stack.

* In general,

 Use $a0 .. $a3 for arguments.

* Use $v0 and $v1 for returns.

* $sp is always the stack pointer -- don't use it for anything else.
« $ra is always the return address -- don't use it for anything else.
» Use $t0 .. $t9 to compute intermediate expressions.

» Don't use $fp.
The order within each of the following clauses is the order in which you should use registers:

* If you're writing mai n() :
1. Prefer using $s0 .. $s7 ("callee-saved", but you're not the callee).

2. If you use any $t0 .. $t9, push it on and pop it off the stack across function calls ("caller-saved", and
you're the caller).

* else if you're writing a "leaf" function (one that does not contain a j al):

1. Prefer using any $t0 .. $t9 (“caller-saved", and you're not a caller).

2. If you use any $s0 .. $s7, push it on the stack at the beginning of the function and pop it off the stack
before every return ("callee-saved", and you're a callee)

* else (you're writing a function that isn't mai n() and calls other functions):

1. Prefer using any $s0 .. $s7, but push it on the stack at the beginning of the function and pop it off
the stack before every return ("callee-saved”, and you're a callee).

2. If you use any $t0 .. $t9, push it on and pop it off the stack across function calls if you want to
preserve it ("caller-saved", and you're a caller).

