CptS 260, Fall 2021 1

Homework #2 Due: 9/16

In this assignment, you will implement a MIPS program that does rational arithmetic.
In the computer, rationals are represented by two 32-bit ints, numerator and denominator
in that order, stored in successive memory locations when in memory and in successive
registers when being used for computation. By convention, the numerator carries the sign,
so the denominator is unsigned.

You will build a set of functions that perform this arithmetic. By convention, all of them
leave results in ($v0, $v1), representing the rational number $v0 / $vi.

You will find a tarball containing a starter file rational.s on the course web page. This
is the only file you need to modify to complete this assignment. Do not change any other
files in the tarball.

rational.s contains a rat_print() function you can use as an example and to print
out your test results. Do not delete or alter this function except as directed below: It will
be called by the grader’s tests.

Be sure to follow the register usage conventions. The filemips_register_conventions.pdf,
downloadable from the Unit 2 hyperlink on the Schedule (and handed out in class), may be
helpful with this.

It is suggested that you build the program in the order indicated to make testing and
debugging convenient. Be sure to do adequate testing!

Do not worry about detecting overflow (although the last problem will reduce the chance
of this).

Put your test program (main:) in main.s. Remember that the grader will use a different
main.s for their tests and will only refer to yours if those tests fail in order to assign partial
credit.

You only need to submit hard copy of your rational.s listing, since that’s the only one
you should modify.

Remember that the sign should be carried in the numerator.

1. [25 points | Add a function rat mul () that takes one rational number ($a0, $al)
and multiplies it by ($a2, $a3) using the rules of rational arithmetic.

2. [10 points | Add a function rat_div() that takes one rational number ($a0, $al)
and divides it by ($a2, $a3) using the rules of rational arithmetic. rat_div() should
do its work by calling rat mul () after making a small alteration to its arguments.

Don’t worry about divide-by-zero.

3. [25 points | Add a function rat_add() that takes one rational number ($a0, $al)
and adds it to ($a2, $a3) using the rules of rational arithmetic.

4. [10 points | Add a function rat_sub() that takes one rational number ($a0, $al) and
subtracts ($a2, $a3) from it using the rules of rational arithmetic. rat_sub() should
do its work by calling rat_add() after making a small alteration to its arguments.

CptS 260, Fall 2021 2

5. [30 points | Rational numbers should always be simplified. For instance, “4/8” should
always be simplified to “1/2”. This doesn’t just look good, but reduces the chance for
overflow. To do this, divide the numerator and denominator of the rational by their
greatest common denominator (GCD). Remember that dividing a number by its GCD
with another number always (by definition) leaves a zero remainder.

The tarball contains a file gcd. s that provides a function ged () that will compute the
GCD of arguments $a0 and $al and return the result in $vO0.

Write a rat_simplify () function to simplify its input (in $a0 and $al using gcd()
and make all of the functions in problems 1-4 call it to simplify their results just before
they return. Also modify rat _print() to simplify its input before printing it.

