
CptS 260, Fall 2021 1

Homework #1 Due: 9/9

Questions regarding instructions are referring to the MIPS32 instruction set.
The following apply to this homework:

� For those questions requesting MIPS code, minimize the number of instructions. (This
is a challenge, but is not required for full credit.)

� Where indicated, present all binary in 32 bits (arranged in 8 groups of four bits each)
and all hexadecimal numbers in 8 hex digits. (This helps both the grader and you.)

� Watch out for side effects: Don’t modify (input) variables and registers that the prob-
lem doesn’t allow you to modify.

� Show your work: Just writing down the answers, even if they are correct, is not enough
and partial credit will depend on it. Attach worksheets, if any.

Reminder: When showing assembler language or doing computations with large numbers
of digits in any base, quadrille (“graph”) paper is your friend.

1. [18 points]

Consider the following MIPS assembler:

add $t0, $s0, $s2

ori $t0, $t0, 0xff

sub $s1, $t0, $s3

Convert the above assembler to a single C assignment statement. Assume int variables
a, b, c, and d are in registers $s0 - $s3, respectively.

2. [22 points] Consider the following C code:

a[i+2] = a[i-1] + b[4];

Express this in commented MIPS assembler. Assume $s0 contains the address of the
int array a, $s1 contains the address of the int array b, and $s2 contains the int

variable i. Use the $t* registers for temporary storage, if you need any.

This can be done in 6 instructions.

CptS 260, Fall 2021 2

3. [24 points] The following C code will determine whether an integer i is a power of 2
or not:

(i > 0) && ((i & (i - 1)) == 0)

If it’s 1, i is a power of 2. If it’s 0, i is not a power of 2.

Express this in commented MIPS assembler. Assume that i is in register $a0. Use
$t* registers for temporary storage. Use labels if you need to skip any instructions.
Leave the result (1 or 0) in register $v0.

This can be done in 6 instructions.

4. [18 points] Fill in the empty cells of the following table, converting the hexadecimal
numbers first to binary and then to the corresponding MIPS instruction. Also indicate
the format of the instruction.
hexadecimal binary (32 bits) MIPS instruction format
0x02108024

0x08000015

0x12400008

5. [18 points] Fill in the empty cells of the following table, converting the MIPS instruc-
tions to binary and then to hexadecimal

MIPS instruction binary (32 bits) hexadecimal
(8 hex digits)

add $t4, $s0, $t7

sw $s3, 4($t0)

bne $t0, $t1, 35

