Introduction

In the previous lecture we developed a method to solve the general linear least-squares problem. Given n samples (x_i, y_i), the coefficients c_j of a model

$$y = f(x) = \sum_{j=1}^{m} c_j f_j(x)$$ \hspace{2cm} (1)

are found which minimize the mean-squared error

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} [y_i - f(x_i)]^2$$ \hspace{2cm} (2)

The MSE is a quadratic function of the c_j and best-fit coefficients are the solution to a system of linear equations.

In this lecture we consider the non-linear least-squares problem. We have a model of the form

$$y = f(x; c_1, c_2, \ldots, c_m)$$ \hspace{2cm} (3)

where the c_j are general parameters of the function f, not necessarily coefficients. An example is fitting an arbitrary sine wave to data where the model is

$$y = f(x; c_1, c_2, c_3) = c_1 \sin(c_2 x + c_3)$$

The mean-squared error

$$\text{MSE}(c_1, \ldots, c_m) = \frac{1}{n} \sum_{i=1}^{n} [y_i - f(x_i; c_1, \ldots, c_m)]^2$$ \hspace{2cm} (4)

will no longer be a quadratic function of the c_j, and the best-fit c_j will no longer be given as the solutions of a linear system. Before we consider this general case, however, let's look at a special situation in which a non-linear model can be “linearized.”

Linearization

In some cases it is possible to transform a nonlinear problem into a linear problem. For example, the model

$$y = c_1 e^{c_2 x}$$ \hspace{2cm} (5)

is nonlinear in parameter c_2. However, taking the logarithm of both sides gives us

$$\ln y = \ln c_1 + c_2 x$$ \hspace{2cm} (6)

If we define $\hat{y} = \ln y$ and $\hat{c}_1 = \ln c_1$ then our model has the linear form

$$\hat{y} = \hat{c}_1 + c_2 x$$ \hspace{2cm} (7)
Once we've solved for c_1, c_2 we can calculate $c_1 = e^{\hat{c}_1}$.

Example. Noise was added to ten samples of $y = \pi e^{-\sqrt{2}x}$, $0 \leq x \leq 2$. The following code computed the fit of the linearized model.

```matlab
ylog = log(y);
a = (mean(x.*ylog)-mean(x)*mean(ylog))/(mean(x.^2)-mean(x)^2);
b = mean(ylog)-a*mean(x);
c1 = exp(b);
c2 = a;
disp([c1,c2]);
3.0157453 - 1.2939429
```

Nonlinear least squares

The general least-squares problem is to find the c_j that minimize

$$\text{MSE}(c_1, \ldots, c_m) = \frac{1}{n} \sum_{i=1}^{n} \left[y_i - f(x_i; c_1, \ldots, c_m) \right]^2$$

(8)

This is simply the “optimization in n dimensions” problem that we dealt with in a previous lecture. We can use any of those techniques, such as Powell's method, to solve this problem. It is convenient, however, to have a “front end” function that forms the MSE given the data (x_i, y_i) and the function $f(x; c_1, c_2, \ldots, c_m)$ and passes that to our minimization routine of choice. The function `fitLeastSquares` in the Appendix is an example of such a front end.

The following example illustrates the use of `fitLeastSquares`.
Example. Eleven data samples in the interval \(0 \leq x \leq 1\) of the function \(y = 2 \cos(6x + 0.5)\) were generated. Normally distributed noise with standard deviation 0.1 was added to the \(y\) data. A fit of the model \(y = c_1 \cos(c_2 x + c_3)\) gave \(c_1 = 1.94,\ c_2 = 5.91,\ c_3 = 0.53\). The fit is shown in Fig. 2 and was generated with the following code.

```plaintext
rand('seed',2);
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+rand(x,'normal')*0.1;
c0 = [1;5;0];

function yf = fMod(x,c)
yf = c(1)*cos(c(2)*x+c(3));
endfunction

[c,fctMin] = fitLeastSquares(x,y,fMod,c0,0.01,1e-6);
disp(c);
```

```
1.9846917
5.8614475
0.5453276
```

The \texttt{lsqrsolve} (Scilab) and \texttt{lsqcurvefit} (Matlab) functions

The Scilab function \texttt{lsqrsolve} solves general least-squares problems. We create a function to calculate the residuals.

The following code solves the problem in the previous example using \texttt{lsqrsolve}.
rand('seed',2);
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+rand(x,'normal')*0.1;

function r = residuals(c,m)
 r = zeros(m,1);
 for i=1:m
 r(i) = y(i)-c(1)*cos(c(2)*x(i)+c(3));
 end
endfunction

c0 = [1;5;0];
c = lsqrsolve(c0,residuals,length(x));
disp(c);

In Matlab the function *lsqcurvefit* can be used to implement a least-squares fit. The first step is to create a file specifying the model function in terms of the parameter vector \(c \) and the \(x \) data. In this example the file is named *fMod.m*

```matlab
function yMod = fMod(c,x)
yMod = c(1)*cos(c(2)*x+c(3));
```

Then, in the main program we pass the function *fMod* as the first argument to *lsqcurvefit*, along with the initial estimate of the parameter vector \(c_0 \) and the \(x \) and \(y \) data.

```matlab
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+randn(size(x))*0.1;
c0 = [1;5;0];
c = lsqcurvefit(@fMod,c0,x,y);
disp(c);
```
Appendix – Scilab code

function [c, fctMin] = fitLeastSquares(xData, yData, fct, c0, cStep, tol)
 nData = length(xData);
 function w = fMSE(cTest)
 w = 0;
 for i = 1:nData
 w = w + (yData(i) - fct(xData(i), cTest))^2;
 end
 w = w/nData;
 endfunction
 [c, fctMin] = optimPowell(fMSE, c0, cStep, tol);
endfunction