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T he Advanced Encryption Standard (AES) is the
new standard encryption algorithm that will re-
place the widely used Data Encryption Standard
(DES). When the National Institute of Stan-

dards and Technology (NIST) set out to develop a new
encryption standard in 1997, it set in motion a chain of ac-
tivities that promises to build a foundation for stronger and
better cryptographic standards for the 21st century, which
is vital in this era of e-commerce and e-government. 

Replacing the DES
In 1973, NIST’s predecessor organization, the National
Bureau of Standards (NBS), invited interested parties to
submit candidate block encryption algorithms for a Fed-
eral Information Processing Standard (FIPS), a standard
for use by federal agencies. IBM offered the only credible
candidate, which, after some modification, was adopted
in 1977 as the Data Encryption Standard, FIPS 46.1 The
DES’s introduction marked the first public discussion and
standardization of strong encryption, which previously
had been primarily the province of governments and mil-
itary security agencies.

In its early days, the DES had its controversies: Dur-
ing the evaluation process, the original IBM submission’s
key size was reduced from 128 bits to 56 bits. IBM made
some modifications to the DES substitution tables
(called S-boxes) that are used repeatedly in the encryp-
tion process to make complex transformations of data.
Martin Hellman and others suggested that the 56-bit key
size was too small, and that because no rationale was ever
given for the design of the S-boxes, it was difficult to
evaluate the security they provided.2 Hellman claimed

there was even a possibility that a back
door might have been introduced that let
the US National Security Agency (NSA) illicitly decrypt
messages. However, in 1991, when Eli Biham and Adi
Shamir discovered differential cryptanalysis, which was
previously unknown in the open literature, it turned out
that those changes to the S-boxes made the final version
considerably more resistant to attack than the original
version. The general belief (never explicitly confirmed)
is that the NSA told IBM enough to help them make
DES resistant to such attacks.3,4

The DES has proven itself over the years. It has be-
come the standard to which all block ciphers are com-
pared. However, by the mid 1990s, it was clear that the
DES’s 56-bit key was no longer big enough to prevent
attacks mounted on contemporary computers, which
were thousands of times more powerful than those avail-
able when the DES was standardized. During the origi-
nal DES selection, there was discussion of using DES
more than once with different keys to extend its effective
key size, and a standard for Triple DES (TDES) that en-
crypts each block three times with DES, using two or
three different keys, was introduced with FIPS 46-3 in
1999; TDES should be secure for many years to come.5

In 1977, NBS believed that encryption was best done in
hardware and DES was designed for hardware imple-
mentation. DES is poorly suited to implementation in
software on general purpose computers that operate
most efficiently on words of 16 to 64 bits because it op-
erates internally on 4 and 6 bits at once and requires
“shuffling” of individual bits, which is slow on most
common computers, but fast in hardware. Moreover, the
TDES needs three times the computation of DES. Un-
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fortunately, software encryption is very important today.
It was therefore time to consider a new encryption stan-
dard that was both more secure than the TDES and more
efficient in software.

Consequently, NIST decided it needed a new federal
standard, which it dubbed the Advanced Encryption
Standard. Because the US Federal Government needs se-
cure communications with international parties and pre-
ferred to use ordinary commercial products for its infor-
mation technology needs, the AES had to be suitable for
general international commercial use. Additionally, it was
important that NIST select the AES by a process that was
perceived to be fair and open, preventing any public sus-
picion that the standard contained a hidden back door.

Selection criteria
NIST conducted an open competition to select the AES.
The basic requirements were that it be a block cipher,
such as DES or TDES, and be at least as secure as TDES
but more efficient in software. In April 1997, NIST held
an open public workshop about the selection criteria.
That September, NIST issued a call for candidate block
cipher algorithms that

• would be unclassified and publicly disclosed;
• offered key sizes of 128, 192, and 256 bits;
• had a 128-bit block size; and
• would be available royalty free anywhere in the world.

Perhaps the most surprising requirement was the
128-bit block size. Before the AES competition, nearly
all block cipher designs followed the DES’s lead with a
64-bit block size. Block cipher encryption algorithms
are used for several purposes, including message authen-
tication. Authentication applications that use an n-size
block are generally subject to collisions (when two differ-
ent messages have the same hash value), which become
increasingly likely after 2n/2 authenticator fields (usually
called tags) are available. Moreover, in many modes of

using block ciphers, a 2n/2 term determines the security
bounds, and the mode becomes less secure or insecure
after 2n/2 ciphertexts are available to an attacker. Thus,
enlarging the block size is at least as important to the
AES’s increased security as enlarging the key size is. The
AES is significantly stronger than the TDES in many
applications, not because of its larger key sizes—in
which the differences in strength might be of little prac-
tical importance—but because the AES block size is
twice as large.

Qualifying candidates
At the first AES Candidate Conference in August
1998, NIST solicited public comments on 15 qualify-
ing AES candidate algorithms. At the second confer-
ence, held in Rome in March 1999, NIST analyzed the
candidates; a few months later, it announced five final-
ist candidate algorithms.

MARS. IBM’s algorithm, MARS, uses innovative tech-
niques including multiplication, data-dependent rota-
tions, and conventional S-boxes. NIST felt MARS was
worthy because it was fast on machines with 32-bit mul-
tiplier hardware, and it uses several separate techniques
that a cryptologist must defeat to break the cipher.
MARS’s primary disadvantage was that it required a fast
multiplier and ran slowly on lightweight platforms such as
8-bit embedded microprocessors.

RC6. Submitted by RSA Data Systems, RC6 is a simple,
elegant algorithm that relies on multiplication and data-
dependent rotations but does not have S-boxes. RC6 is
fast on platforms that have a 32-bit multiplier (it only re-
quires a squaring circuit), but not as efficient on simpler
platforms without hardware support for multiplication
(or squaring). Opinions differed about whether RC6’s
simplicity and comparative ease of analysis were a source
of comfort or worry.

Rijndael. Joan Daemen and Vincent Rijmen’s algorithm
Rijndael uses 8-bit S-boxes as its source of nonlinearity
and simple XOR (exclusive-or) operations (it does not
need addition). Because of its simple operations and byte
orientation, Rijndael is fast in hardware and on 8-, 32-,
and 64-bit microprocessors. Rijndael was the only final-
ist that adjusts the number of rounds needed for each key
size, improving performance for the 128-bit size. Like
RC6, opinions differed on whether Rijndael’s simplicity
was a comfort or a worry.

Serpent. Produced by Ross Anderson, Eli Biham, and
Lars Knudsen, Serpent (like Rijndael) uses only simple
XOR type operations and eight 4-bit S-boxes, with an
architecture that allows 32 simultaneous applications of
each S-box. Although Serpent is fast in hardware, the de-
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The exclusive-OR (XOR) operation is a simple binary operation widely used

in digital logic and cryptography. Let “⊕” represent XOR, then: 0 ⊕ 0 =

0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, and 1 ⊕ 1 = 0. An example of a multibit XOR

operation is: 1101 ⊕ 0110 = 1011, in contrast to addition, where 1101 +

0110 = 0011. You can think of XOR as bit-by-bit addition without the carry.

XOR operations are faster than addition because addition requires time for

carries to ripple down the results. XOR has useful properties for cryptography:

a ⊕ a = 0 and a ⊕ b ⊕ a = b. If R is a cryptographically generated random

string, P is a plaintext string, and C a ciphertext string, then we can generate

ciphertext as C = R ⊕ P, and we can recover the plaintext P = R ⊕ C.

Exclusive-OR
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signers adopted a conservative security margin with sev-
eral rounds (in comparison to its competitors) that hurt its
software performance. Like Rijndael and RC6, Serpent’s
simple structure sparked either comfort or worry. 

Twofish. A team of American companies and academics
produced Twofish, which generates its S-boxes from the
key and uses several innovative techniques, including key
set-up options that can be optimized for different perfor-
mance environments. Some criticized Twofish for being
too complex to analyze in the short AES timeframe,
whereas others felt that its complexity provided an extra
margin of safety. Twofish was overall a good performer on
most platforms, but not a leader. 

MARS, Twofish, and RC6 were all considered
“American” submissions; Rijndael’s designers were Bel-
gian and Serpent’s designers were from the UK, Israel,
and Denmark. There was much verbal speculation that
NIST would never select a “foreign designed” algo-
rithm—there was even speculation, particularly in Eu-
rope, that the competition had been “fixed” to select
MARS, which was, like the DES, an IBM design. 

Selecting the AES
Following the public review period, NIST spent much of
the summer of 2000 reviewing the data, comparing the five
finalists, and then selecting the winner. Criteria included

• General security (the most important consideration)
• Performance
• Algorithm characteristics, including intellectual property

The final selection process and the reasons for the eventual
winner’s selection are comprehensively documented in
James Nechvatal and his colleagues’ “Report on the De-
velopment of the Advanced Encryption Standard (AES).”6

Security
A strong symmetric key encryption algorithm such as the
AES has one basic security goal—that the best attack
against it should be key exhaustion (trying every possible
key until you find one that works). If key exhaustion is the
best attack, then key size determines the symmetric key
algorithm’s strength. To find an n-bit key, it is, on average,
necessary to try 2n–1 keys, but if you make n sufficiently
large, this becomes wildly impractical. We know break-
ing 56-bit DES by key exhaustion is practical, based on
demonstrations in 1997 and 1998.7 Certainly, large orga-
nizations with substantial resources can break algorithms
by key exhaustion for keys larger than 56-bits today, al-
though most cryptographers believe 80 bits will be secure
for a few more years.

This is why the AES uses 128-, 192-, or 256-bit keys.
Moore’s law, a heuristic that has held roughly true for sev-
eral decades, observes that progress in semiconductor de-

vices doubles the computational power available for a
constant cost approximately every 18 months. If Moore’s
law continues to hold, and key exhaustion by conven-
tional means is the best attack, then the 128-bit AES
should still be as secure as an 80-bit algorithm is today

until 2066, and the 256-bit AES should be as secure as an
80-bit algorithm is now for several centuries. However,
different technologies such as quantum computing could
change the rules of the game, and who can predict how
long Moore’s law will hold? Nevertheless, Moore’s law is
the best estimator we have.

How do we ensure that the best attack on an algo-
rithm is key exhaustion? There is no way to prove it.
Rather, cryptologists study the algorithm and attempt to
find shortcut attacks—methods that find the key with less
than 2n–1 operations. Any attack that requires less than
2n–1 operations is considered a “break” of the algorithm,
even though it might be totally impractical to carry out
the attack. Therefore, breaking the 256-bit version of an
algorithm is in some sense easier than breaking the 128-
bit version because far more operations are permitted to
do so. For example, suppose a particular attack found the
key of the 256-bit version of an algorithm with 2200 op-
erations but required 2140 operations to find the key for
the 128-bit version. In that case, the 256-bit version
would be considered broken whereas the 128-bit ver-
sion would be considered unbroken, even though the at-
tack on the 256-bit version would be wildly impractical
and the 256-bit version would remain far stronger than
the 128-bit version. 

Many well-known methods for attacking algorithms
require large amounts of either known or chosen plain-
text or ciphertext. That is, the analyst is assumed to have
either a large amount of plaintext–ciphertext pairs avail-
able or the ability to encrypt or decrypt chosen values
and obtain the results. You can probably convince your-
self that any attack that requires 2100 chosen or known
plaintexts is not likely ever to be a practical concern in a
real application.

Nearly all symmetric key algorithms consist of several
repetitions of a function called the round function. Ana-
lysts typically work on simplified versions of an algo-
rithm, usually with fewer invocations of the round func-
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tion, and attempt to find a technique that results in a
shortcut attack for the simplified versions. They then try
to extend the attack to the full algorithm with the full
number of rounds. Algorithm designers typically esti-
mate the number of rounds needed to defeat known at-
tacks and then add more rounds as a safety factor. NIST
might have adjusted the number of rounds but chose to
evaluate each algorithm with the number submitted by
the algorithms’ designers. 

If no shortcut attacks are found after intensive study,
then the algorithm is considered secure. The longer and
more intensively researchers study algorithms without
finding a shortcut attack, the more confidence there is in
the algorithm. Cryptographic researchers did not report
any shortcut attacks against the finalist algorithms during
the AES selection process. However, participants in the
AES process and other researchers developed several
shortcut attacks against reduced round variants of vari-
ous candidates. NIST considered a suggestion that their
selection panel might attempt to compare the ratio of
rounds in the full candidate algorithms to the number of
rounds in the simplified breakable versions to measure
the algorithms’ safety margin. In the end, this did not
seem to be meaningful, if for no other reason than this
measure did not account for the differences in the re-
sources (such as plaintext required for the attacks), and
because it wasn’t clear that such a margin would apply to
novel attacks, which were apparently necessary to break
the complete algorithms. 

During the selection process, NIST could not distin-
guish between the security that the finalist algorithms of-
fered. All were apparently well designed to resist known
attack methods. For example, the strongest attack found
against 128-bit Rijndael during the selection process
worked against seven (of 10) rounds of the Rijndael and

required more than 2127 pairs, 2101 bytes of memory, and
2120 operations. 

The NIST selection panel was left with arguments
about the simplicity or complexity of candidate algo-
rithms. The comparative simplicity of some of them
made analysis more straightforward, which could be
construed as an advantage (because we can analyze this,
we know how strong it is) or as a disadvantage (because

this is simple, a new attack is more likely to be able to
break it). Other algorithms were more complex, which
also could be construed as an advantage (even if you
break a, you still have to get through b and c to break the
entire algorithm) or a disadvantage (this is too complex
to analyze, but there might be something wrong that an
attacker will eventually find). These arguments, while
interesting, were also inconclusive.

After analysis, the candidates appeared to be secure
against all known attacks, and NIST did not feel that it
could make a decision based on security considerations
with the available analytical tools.

Performance
Performance has many dimensions, although initial dis-
cussion of the candidates focused on their performance
on 32-bit Pentium processors. All finalist algorithms of-
fered better performance than the TDES when imple-
mented in software, but they had significant differences in
performance. NIST considered a wealth of data regard-
ing the candidates’ performance on many platforms, in-
cluding Pentiums, Itaniums, RISC processors, 8-bit em-
bedded microprocessors, digital signal processors (DSPs),
field programmable gate arrays (FPGAs), and applica-
tion-specific integrated circuits (ASICs). All the candi-
dates performed at least moderately well on Pentiums and
similar platforms, but the weakest software candidate,
Serpent, was arguably the fastest in hardware.

Intellectual property
One goal was for the AES to be available royalty free
worldwide. This might seem a strange goal for a US De-
partment of Commerce agency such as NIST, but deci-
sion was widely applauded in the cryptographic commu-
nity. This objective also seemed reasonable because the
DES’s patents had expired and NIST had many un-
patented algorithms to choose from. 

Intellectual property did not factor into the final selec-
tion, though, because NIST required the candidates’ de-
signers to put their intellectual property in the public do-
main if it chose their algorithm. Additionally, NIST did
not find that the finalists infringed on other patents. (This
does not mean that such patents do not exist, however, or
that patent holders might not dispute this statement.
Moreover, there is always the possibility that an AES se-
lection might have infringed on a patent that was issued
subsequent to the selection.) 

Intellectual property considerations factored into a
key decision, though: should NIST select only one AES
algorithm or more than one? There was a strong argu-
ment for more, so that all our eggs would not be in one
basket should a new analytical technique break the win-
ner. However, a straw poll at the third AES conference
ran strongly against multiple algorithms. Three argu-
ments against multiple algorithms were that
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• multiple AES algorithms would confound interoper-
ability;

• hardware vendors feared that they would be forced to
implement all the AES winners on their chips, costing
precious real estate; and

• the more AES algorithms, the greater the chance that at
least one of them would have intellectual property
problems, forcing vendors to license a patent.

Based on this, NIST decided to pick one algorithm.

The winner
On 2 October 2000, less than four years after the selec-
tion process began in 1997, NIST announced that the
Rijndael algorithm was the new AES. NIST primarily
selected it because of its strong performance on nearly all
platforms and its ease of implementation in hardware. It
had been the most popular choice in straw polls at the
final AES conference and was favorably received overall
by the international cryptographic community. (In fact,
the selection of a non-US design surprised many in the
community and probably increased the international ac-
ceptance of the AES.) On 6 December 2001, after a com-
ment period and formal approval by the US Secretary of
Commerce, NIST officially announced its adoption of
the AES.8

Extending other algorithms
Although the selection of Rijndael and the publication of
the AES were major milestones, they marked the begin-
ning of another sort. Now that truly strong symmetric key
encryption is available, we must make correspondingly
strong algorithms of other types available because encryp-
tion algorithms are rarely used alone. For example, con-
sider sending an email message encrypted under the AES.
You could do this by encrypting the actual AES encryp-
tion key with the recipient’s public key, which is found in
a public key certificate protected by a digital signature.
Four different algorithms are used for this encryption:

• A public key transport algorithm transports the actual
encryption key to the receiver

• A public key signature algorithm authenticates the mes-

sage sender and validates the certificate that provides the
public key for transporting the encryption key

• A hash algorithm is also used in the signatures
• The AES encryption algorithm encrypts the message.

Like a chain, if any of those cryptographic links are weak,
then the entire process is vulnerable.

After selecting the AES, NIST standardized an aug-
mented suite of secure hash functions in FIPS 180-2,9 the
Secure Hash Standard, in August 2002. FIPS 180-2 spec-
ifies the old standby 160-bit SHA-1 hash function and
three new hash functions: SHA-256, SHA-384, and
SHA-512, with 256-, 384- and 512-bit message digests
(see the “Hash functions” sidebar). 

NIST is now revising FIPS 186-210, the Digital Sig-
nature Standard, which specifies the digital signature al-
gorithm (DSA) and adopts the RSA (named for its cre-
ators Rivest, Shamir, and Adleman)11 signature
algorithm specified in ANSI X9.3112 and the elliptic
curve digital signature algorithm (ECDSA) specified in
ANSI X9.62.13 These algorithms each create digital
signatures using different mathematical methods. Each
provides several allowable key sizes that supply varying
levels of strength. However, all were written to work
specifically with SHA-1; DSA was defined only for key
sizes up to 1,024 bits. This revision, FIPS 180-3, will
extend key sizes for DSA and specify appropriate hashes
for larger keys.

NIST has also begun preparing a key management
standard that will encompass public key techniques for
key agreement or transport, and for other topics such as
specific special methods for “wrapping” (encrypting)
symmetric keys with other symmetric keys.

NIST recognized the need for a whole suite of algo-
rithms whose strength was comparable to 128-, 196-,
and 256-bit AES. For example, SHA-1 is a 160-bit hash,
which for many applications is about as strong as an 80-
bit symmetric key algorithm. NIST therefore has begun
to extend and upgrade its other standards so that across-
the-board choices exist comparable in strength to the
AES. Table 1 summarizes the estimated strength of the
current and planned NIST algorithms.

With the exception of TDES, the assumption for the
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Cryptographic hash functions are the utility tools of cryp-

tography. A hash function does not have a key. It generates a

short, fixed-size message digest from a long, variable-size message.

Every bit of the digest is a complex function of every bit of the

message, and it is impractical to find two different messages with

the same message digest value. Hashes are used in digital sig-

natures (we actually sign the message digest, rather than the

message, with a private key operation) as integrity checks, for

message authentication codes, and in random number generation,

key derivation, and a host of other applications. Prior to the AES

selection, the only FIPS approved hash algorithm had been SHA-1,

with a 160-bit message digest.

Hash functions
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symmetric key algorithms in Table 1 is that the best attack
is key exhaustion. As mentioned earlier, a key exhaustion
attack on an n-bit key will, on average, require 2n–1 opera-
tions. Because each TDES encryption requires three DES
encryptions, each with a 56-bit key, the total key is 168 bits
long; however, a “meet in the middle” attack finds a TDES
key in 2112 operations.14 A similar attack makes key ex-
haustion on double DES nearly as efficient as on DES. A
computer needs a large memory to carry out the attack,
but Table 1 is based only on computational costs.

A hash algorithm’s strength depends on how it is
used. For example, a digital signature scheme based on a
hash algorithm is vulnerable to forgeries if there are col-

lisions present. For an n-bit hash, you can expect to find
a collision after 2n/2 messages are hashed. Therefore, an
n-bit hash for a digital signature scheme has equivalent
strength to an n/2-bit symmetric key algorithm, as Table
1 shows. Avoiding collisions might not be important for
other hash functions; for example, in message authenti-
cation or pseudorandom number generation, the hash
algorithms in Table 1 might correspond to larger sym-
metric key sizes.

For public key algorithms, estimating the computa-
tion needed to discover keys is based on the best known
current methods for factoring and discrete log computa-
tion, and on an estimate of future progress in factoring or
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The AES is a symmetric key block encryption algorithm.

Symmetric key algorithms are algorithms that use the same key

to perform an operation and its inverse. For example, they use the

same key to encrypt and decrypt a message, or they use the same

key to create and verify a Message Authentication Code (MAC). 

Block ciphers operate on fixed blocks of data at a time. They

encrypt data and are building blocks for other functions such as

message authentication, pseudorandom number generation, or

hashing. Figure 1 in the main text (next page) illustrates the basic

electronic codebook (ECB) mode of block cipher operations, which

occurs under the symmetric key’s control, so called because the same

key is used to both encrypt and decrypt data. An m-bit block of

plaintext data and an n-bit key are input to the encryption

algorithm, which generates an m-bit block of ciphertext output. The

same key and the ciphertext block are input to the decryption

algorithm to output the plaintext again. 

The secrets are the plaintext and the key. Although military

algorithms are traditionally kept secret, this is infeasible for open

commercial use, and everyone in the field knows the AES

algorithm. Security depends only on the key’s secrecy. The goal of

a strong symmetric key encryption algorithm is that there is no

way to decrypt the data except by knowledge of the key and no

better way to find that key than key exhaustion. Put plainly, given

infinite resources, key exhaustion always works. But, on average,

key exhaustion takes 2n–1 operations, and if n is large enough, all

the combined computer power in the world cannot accomplish

the task in a human lifetime or even for centuries. 

The AES block size is 128 bits (before the AES, 64 bits was

common) and the key sizes can be either 128, 192, or 256 bits.

Every key defines a different codebook, mapping each plaintext

value to a unique ciphertext value. We assume that an adversary

can obtain some plaintext–ciphertext pairs (he or she might know

the contents of some encrypted messages). The block size must,

therefore, be large enough that an adversary cannot accumulate

enough pairs to learn any appreciable fraction of the total

codebook. In practice, we prevent this by using large blocks and

by changing keys often enough that only a small fraction of the

codebook is ever used. Obviously this constraint on key life

imposed by a 128-bit block cipher such as the AES is much less of

a limitation than for a 64-bit block cipher.

Block ciphers

SYMMETRIC SYMMETRIC KEY HASH PUBLIC KEY ALGORITHM KEY SIZE (BITS)
KEY (BITS) ALGORITHM ALGORITHM DISCRETE LOG RSA ELLIPTIC CURVES2

(PUBLIC/PRIVATE)1

80 SKIPJACK SHA-1 1024/160 1024 160

112 TDES 2048/244 2048 224

128 AES-128 SHA-256 3072/256 3072 256

192 AES-192 SHA-384 7680/384 7680 384

256 AES-256 SHA-512 15360/512 15360 512

1. Includes digital signature algorithm (DSA) and Diffie-Hellman key agreement algorithm.

2. Includes elliptic curve digital signature algorithm (EC-DSA) and elliptic curve Diffie-Hellman (ECDSA) key agreement algorithm.

Table 1. Key sizes for equivalent strengths of common algorithm types.
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discrete logarithm techniques. The most effective known
attacks on these algorithms also have large memory re-
quirements, but the estimates in Table 1 do not account
for memory requirements.

Modes of operation
Block ciphers are used to protect data in certain basic pat-
terns called modes of operation. After NIST introduced the
DES in 1977, it produced FIPS 81, DES Modes of Opera-
tion, which defines four encryption modes for the DES al-
gorithm: the electronic codebook (ECB) mode, the ci-
pher block chaining (CBC) mode, the cipher feedback
(CFB) mode, and the output feedback (OFB) mode.15

These four modes, informally known as the “NIST
modes,” have been widely adopted by users of cryptogra-
phy around the world. Although these modes are defined
in FIPS 81 specifically for the 64-bit block and 56-bit key
of  DES, they can be extended to other block and key sizes. 

Of the modes, two include two full block cipher
modes that directly encrypt entire blocks of data at a time:

• ECB mode, as Figures 1 illustrates, is the mode in which
a block of plaintext is simply encrypted directly to form
the ciphertext, and is the basic operation from which all
other modes are built. (See the “Block Ciphers” sidebar
for an ECB mode explanation.) However, when ECB
mode encrypts data, the same plaintext input results in
the same ciphertext output, so patterns in the input are
revealed to an eavesdropper. Therefore, ECB mode is
insecure for many applications.

• CBC mode, illustrated in Figure 2, is the mode in which
the ciphertext of block i is XORed with the plaintext
of block i+1 before it is encrypted. The first block is
XORed with an initialization vector (IV) that need not
be kept secret. CBC mode hides data patterns in the ci-
phertext and is more secure than ECB mode. One
problem with CBC mode, though, is that it is strictly
block serial, so block i must be encrypted before block
i+1, limiting its ability to perform multiple operations
in parallel. A single bit error in a communications chan-
nel usually results in two full blocks of corrupt plaintext. 

FIPS 81 also includes two stream cipher modes, in
which the block cipher generates a unique pseudoran-
dom keystream that is determined by a key, an IV, and, in
some cases, the plaintext itself. The sender then XORs
the keystream with the plaintext to encrypt it, and the re-
ceiver then XORs the keystream with the ciphertext to
decrypt it. The IV need not be kept secret but must be a
nonce, a value that is never repeated during a crypto-
graphic session period or until the key is changed. Only
the block cipher encryption operation is needed; block
cipher decryption is not used. 

Using stream ciphers has its pitfalls; in particular, the
keystream must not be repeated or plaintext could be re-

vealed, and it is sometimes possible for an attacker to in-
vert predictable bits in the plaintext. In many cases, if bits
are added to or lost from the ciphertext during transmis-
sion, cryptographic synchronization is lost. Using stream
ciphers with noncryptographic checksums in protocols is
perilous and could let an active attacker decrypt plaintext
without learning the key. For example, an application
that uses a stream cipher insecurely is the IEEE 802.11
WEP protocol, which protects wireless Ethernet. WEP
falls victim to such a checksum attack and also more or
less guarantees that cipher streams repeat after a short pe-
riod of operation. 

You might ask, if stream ciphers come with all these
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pitfalls and perils, why do we use them? We use stream ci-
phers to protect data communications channels because
the keystream can be generated in parallel with the rest of
the channel processing. Therefore, stream ciphers only
need to introduce one bit-time of additional latency to
encrypt, plus one bit-time to decrypt. CBC or EBC
mode, on the other hand, must accumulate a full block of
data before encrypting or decrypting it, and also adds the
time required for the encryption and decryption opera-
tions to the channel latency. This delay is intolerable in
many communications applications.

The two stream cipher modes of FIPS 81 are

• OFB mode. As Figure 3 illustrates, in this mode, the en-
cryption operations output is fed back into the input

and used to generate a keystream, which is then
XORed with the data to generate the ciphertext. Un-
like many modes, ciphertext bit transmission errors are
not expanded in the received plaintext, but if bits are
lost or inserted in the ciphertext, cryptographic syn-
chronization is lost. 

• CFB mode. As Figure 4 illustrates, this is another stream
cipher mode in which the block encryption output is
XORed as a keystream with the plaintext, but the feed-
back term to the encryption algorithm is the ciphertext
itself. If only one ciphertext bit at a time is fed back
through a shift register into the block encryption opera-
tion, this mode can be made self-synchronizing. CFB
transmission errors in the ciphertext are expanded in the
plaintext output. In some cases, this error expansion can
be a security advantage because it prevents an adversary
from selectively inverting only one bit of plaintext.

NIST knew that it would have to revise the AES’s
modes of operation to account for the block and key size
differences from DES. Moreover, a major complaint
about the existing modes (except ECB) was that they all
involved feedback or chaining, making it impossible to
improve their performance with parallel encryption op-
erations. On the other hand, ECB is almost always inse-
cure if it is used to encrypt a lot of data directly. NIST
then planned to produce a new, updated modes of opera-
tion standard that was general enough to work with any
block cipher and included a counter mode.

Figure 5 shows a new mode, the counter mode (CTR),
that many AES selection process participants requested
who had high performance applications. In CTR mode,
like CFB and OFB modes, a counter is encrypted to gen-
erate a keystream, which is then XORed with the plain-
text to generate ciphertext. The counter values used with
a given key must be nonces because the keystream, like
any keystream, must never repeat. A property of CTR
mode, shown in Figure 5, and different than CBC, CFB
and OFB modes, is that there is no feedback or chaining;
therefore you can perform several encryptions in paral-
lel—a significant advantage in high-performance appli-
cations. Like OFB mode, ciphertext transmission errors
are not expended, but an adversary can invert selected bits
in the plaintext.

To accommodate the AES and to add a parallelizable
mode, NIST Special Publication 800-38A16 defines
modes of operation for data encryption and decryption
using any block cipher algorithm. It includes four con-
fidentiality modes of FIPS 81: ECB, CBC, CFB, and
OFB, along with the CTR mode. NIST issued a special
publication rather than a FIPS in the near term because
the organization continues to add new modes, refine
existing modes, and add additional advice and guidance
on their use. The refinements and additional advice pre-
vent insecure mode use. For example, with CBC mode,
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plaintext must be padded out to a full block before it is
encrypted. NIST SP 800-38A gives an example of such
a padding scheme, but does not require that specific
one. Recent work has shown that some commonly used
CBC padding schemes, when used in certain protocols,
can be exploited to allow decryption of chosen blocks
of ciphertext, independent of the encryption algo-
rithm, without knowledge of the key.17 Recent work in
encryption modes and attacks that exploit the interac-
tions between the encryption modes and the communi-
cations protocols they are imbedded in necessitate con-
tinued refinement of the specifications for even the
existing modes.

New modes
Researchers have proposed more than a dozen new
modes to NIST (see http://csrc.nist.gov/encryption/
modes/proposedmodes). Among the more interesting of
these are three that can be parallelized and that combine
encryption, authentication, and integrity protection for
little more than the cost of encryption. However, select-
ing a standard mode is made difficult by intellectual prop-
erty issues, because these modes’ inventors have applied
for patents (some of which are perhaps conflicting) al-
though none have been issued. NIST, like most standards
organizations, allows the use of patented methods in stan-
dards, provided reasonable, nondiscriminatory licensing
is available. However, cryptographic standards that use
patented technology are generally an inflammatory issue
in the wider cryptographic and protocol standards com-
munities. In particular, patent licensing problems are
often seen to frustrate open-source implementations,
such as Open SSL, which have been a great catalyst in the
evolution of network protocol and security standards.

The modes of operation work might be less glam-
orous but it’s more fundamental than the selection of the
AES itself. The AES block cipher could be broken, or
other block ciphers that are much faster might be in-
vented. In time, new block ciphers could be created with
better properties than the AES. But the modes of opera-
tion, whose security is predicated on the security of the
block cipher they use, can be used with any block cipher,
and therefore are arguably more important than block ci-
pher algorithm standards. 

The past few years have been a period of great progress
in the analysis of cryptographic modes and protocols, and
new protocols come with proofs of some of their security
properties (assuming the underlying block cipher’s secu-
rity). Cryptologists have discovered many attacks against
NIST’s original four modes as they have been applied in
various protocols. Often these attacks involve interactions
between the mode and some other protocol element, for
example, a noncryptographic checksum or a padding
scheme. Some attacks are easy to carry out in particular
cases, some are difficult but still practical, and others are

probably impractical in most cases. The emerging trend is
to develop cryptographic mode specifications that are
more resistant to such attacks. NIST expects the modes of
operations effort to continue for the foreseeable future,
encompass new modes, identify problems with existing
modes, and give better advice on applying them safely.

A s a practical matter, the widespread adoption of a
new encryption standard takes a long time. First

the code must be incorporated into cryptographic
toolkits. NIST believes this has generally happened with
the AES; indeed, Rijndael’s code appeared in several
toolkits before NIST made its final selection. In many
cases, it is necessary to extend or expand protocol stan-
dards to use the new algorithm; for example, an IETF
RFC defines the cipher suites for use in the Transport
Layer Security (TLS) Standard,18 and no fewer than
three Internet drafts deal with the intricacies of using the
AES with the S/MIME secure E-mail Standard.19–21

Next, implementations of the algorithm must work
their way into actual products, and, finally, in many cases,
a sufficient quantity of the AES-enabled product must
ship before the algorithm sees any real use. For example,
if you have an AES-enabled S/MIME client, it does little
good until many or most S/MIME users also have AES-
enabled clients. 

An “AES Core” is a design for implementing the AES
algorithm in hardware on an application specific inte-
grated circuit or a field programmable gate array. ASICs
and FPGAs are widely used to build electronic products.
Specialized logic design companies (and some universi-
ties) develop such core designs and then sell them (there
also some freeware cores) to companies developing elec-
tronic products, saving the developers from designing
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their own complex logic designs for widely used func-
tions, such as the AES encryption. A March 2003 Google
search on “AES core” revealed 18 available AES core de-
signs from the US (eight), the UK (three), Canada (one),
Singapore (one), India (one), Australia (one), Austria
(one), India (one), and Yugoslavia (one). 

The NIST Cryptographic Module Validation Pro-
gram (CMVP) validates cryptographic modules and tests
algorithm implementations. The AES validation tests
have only been available since March 2002, but by March
2003, 59 AES implementations were already validated. 

The current draft of the IEEE 802.11i addresses the
numerous security problems with the very successful
802.11 wireless Ethernet standards and now specifies two
different AES-based encryption modes, both of which
have been submitted to NIST as new modes of operation.
One of these two modes, the Counter with CBC MAC
(CCM) mode, has been selected as the “mandatory to
implement” mode for IEEE 802.11i.16
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