Lecture 23

Random numbers

1 Introduction

1.1 Motivation

Scientifically an event is considered random if it is unpredictable. Classic examples are a coin
flip, a die roll and a lottery ticket drawing. For a coin flip we can associate 1 with “heads” and 0
with “tails,” and a sequence of coin flips then produces a random sequence of binary digits.
These can be taken to describe a random integer. For example, 1001011 can be interpreted as the
binary number corresponding to

1(2°)+0(2°)+0(2)+1(2%)+0(2%)+1(2")+1(2°)=64+8+2+1=75 (1)

For a lottery drawing we can label n tickets with the numbers 0,1,2,...,n—1 . A drawing then
produces a random integer i with 0<i<n—1. In these and other ways random events can be
associated with corresponding random numbers.

Conversely, if we are able to generate random numbers we can use those to represent random
events or phenomena, and this can very useful in engineering analysis and design. Consider the
design of a bridge structure. We have no direct control over what or how many vehicles drive
across the bridge or what environmental conditions it is subject to. A good way to uncover
unforeseen problems with a design is to simulate it being subject to a large number of random
conditions, and this is one of the many motivations for developing random number generators.
How can we be sure our design will function properly? By the way, if you doubt this is a real
problem, read up on the Tacoma Narrows bridge which failed spectacularly due to wind forces
alone [1].

1.2 “Truly random” numbers

In classical physics, nothing is fundamentally “random.” In Principle the present state of the
universe combined with physical laws exactly determines the future state of the universe.
Classical physics is strictly deterministic. In principle if we knew the positions and velocities of a
pair of dice thrown in the air, their physical properties and the properties of the surface on which
they will land, we could predict what numbers they will show by solving the equations of motion.
However, in practice the behavior of the dice-plus-table system is so complicated that even
extremely small changes in the initial conditions or the properties of the dice will cause a
significant change in their final state. There are many chaotic systems that display this so-called
butterfly effect [Error: Reference source not found]. For practical purposes these are random
events, even in a deterministic universe.

According to quantum mechanics there are truly random phenomena at the atomic scale. For
example, it is not possible, even in principle, to predict when a radioactive nucleus will decay.
We can only make statements about the probability of its doing so during a certain time interval.
For this reason quantum effects are arguably the ultimate way to generate “truly random”
numbers, and the fields of quantum random number generation and quantum cryptography are
areas of active research and development.
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In the past sequences of random numbers, generated by some random physical process, were
published as books. In fact the book A4 Million Random Digits with 100,000 Normal Deviates,
produced by the Rand Corporation in 1955, is still in print (628 pages of “can't put it down”
reading!) as of 2014. It is still the case that if a sequence of truly random numbers is desired they
must be obtained from some physical random process. One can buy plug-in cards that sample
voltages generated by thermal noise in an electronic circuit (such as described at onerng.info),
and the website random.org generates random numbers by sampling radio-frequency noise in the
atmosphere.

1.3 Pseudo-random numbers

A properly functioning computer is a strictly deterministic system. Given the same data and
instructions it will produce the same output every time. Therefore it is impossible for a computer
to generate truly random numbers. Instead we have to be content with the generation of pseudo-
random numbers. A computer program that generates a sequence of such numbers is called a
pseudo-random number generator (PRNG).

A sequence of numbers is pseudo-random if it “looks like” a random sequence. More rigorously
there are various statistical tests available to quantify how “random looking” the output of a
PRNG is. Until recently the so-called “diehard tests” [2] were a common software tool for this
purpose. More recently the National Institute of Standards and Technology has released a
random-number toolkit [3].

Consider the following sequence of numbers
012345¢67

There appears to be nothing random about this sequence; it follows an obvious pattern of
incrementing by one. Of course it's possible that a random sequence of numbers just happened to
form this pattern by chance, but intuitively that's not very likely. On the other hand the sequence

16745230

which contains the same eight digits does look somewhat random, although it doesn't take long to
notice an add-one and subtract-three pattern in the last seven digits. In fact it was generated by a
algorithm which is every bit as deterministic as “increment by one,” and to which we now turn.

2 Linear congruential generators

The expression

y=x (modm) )
read “y equals x modulo m,” means that y is the remainder when x is divided by m. For example
3=11 (mod 4) 3)
because
% = % =2 remainder 3 4)

In Scilab/Matlab we can calculate this using the command

y = x—int (x/m) *m
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which subtracts off an integer number times » from x leaving the remainder. More directly

-->modulo(11,4) //Scilab
ans =
3.

>> mod(11,4) %Matlab
ans =
3

Another way to think of this is that x (modm) is the least-significant digit of x expressed in
base-m. For example 127 (mod10)=7,and 13 (mod8)=5 because 13=1-8'+5-8"=15,.
If x(modm)=y(modm) we say “x is congruent to y modulo m” and we write

x=y (modm) (5)

A linear congruential generator (LCG) is a simple method for generating a permutation of the
integers 0<i<m—1 using modular arithmetic. Starting with a seed value x,, with 0<x,<m , a

LCG generates a sequence x,,X,,..., x, with
xn+1:(axn+c)(m0dm) (6)

Provided the constants a and c¢ are properly chosen this will be a permutation of the integers
0<i<m—1.If mis a power of 2, then ¢ must be odd and @ must be one more than a multiple of

4. For example, if m=2’=8, a=5,c=1 and x,=0,then x,,x,,..., xg 18 the permutation

16745230

because
(0+1) mod8=1, (5-1+1) mod8=6, (5:6+1) mod8=31 mod 8=7,
(5-7+1) mod8=36 mod8=4, (5-4+1) mod8=21 mod8=5,
(5-5+1) mod8=26 mod8=2, (5-2+1)mod8=11 mod8=3
and (5-3+1) mod8=16 mod8=0

Since x;=x,=0 the permutation will then repeat with x,=x,=1 and so on. If we used a seed
value of x,=4 then we would get the sequence

52301674

which is the same sequence starting from a different digit. A LCG with given a and ¢ values will
always produce the same sequence, and using a different seed value will simply start us off at a
different location in the sequence.

A repeating sequence of eight numbers is probably not of much use, but in practice we use a

large value of m, quite commonly m=2" corresponding to a “32-bit unsigned integer” which
are conveniently implemented in digital hardware. Fig. 1 shows plots of sequences generated

with m=2'"=1024 and parameters a=5,c=1 (left) and a=9,c=1 (right). Ten samples from
the latter sequence
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800 1000

Fig. 1: Output of linear congruential generator ( vertical vs. n horizontal) with m=1024, starting with seed
value x,=0. (left) a=5, c=1; (right) a=9,c=1. Repeated patterns are a strong indication that these are not

truly random sequences.
532 693 94 847 456 9 82 739 508 477

don't display an immediately obvious sequential relationship. In Fig. 1 we plot both sequences in
full. In the left graph some of the samples form a very noticeable diagonal line pattern which is a
strong indication that the data are almost certainly not truly random. The right plot lacks such a
glaring “red flag.” However, on closer inspection one can see repeated patterns throughout the
image (indicated by polygons). It is extremely unlikely that a truly random sequence of numbers
would exhibit such a pattern, and a LCG is unacceptable for a demanding PRNG application
such as cryptography.

In engineering applications we usually want random real numbers x instead of random integers i.
We can easily generate real numbers 0<x<1 from integers 0<i<m—1 by calculating

X=—
m

Of course there will only be a discrete set of m such real numbers with spacing 1/m , but if m is
large enough this can provide a good approximation to a “real random number generator.” In
many programming languages (including Scilab) the command

x = rand();

generates a “random” real number x with 0<x<1 using this method.

LCGs are simple to implement and for many years were the “standard” PRNGs in many
computer programming languages. For simple engineering design and analysis tasks they are
often “good enough.” A Scilab LCG implementation appears in the appendix. Note that this
makes explicit use of 32-bit unsigned integers. Arithmetic performed with this data type is

inherently modulo 2% .
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Fig. 2: 100,000 samples of the multiply-with-carry PRNG.

3 More advanced pseudo-random number generators

Various methods have been developed to try and improve on the LCG method. The multiply-
with-carry method, roughly speaking, generates two LCG sequences combined with some “bit
masking” and “bit shifting” and combines these to produce a pseudo-random output. A Scilab
implementation is given in the Appendix and a plot of 100,000 samples is shown in Fig. 2.
Currently one of the most commonly used improved algorithm is called the Mersenne twister [5],
and both Scilab and Matlab have implementations of this. This algorithm is fairly complex.
Instead of one or two seed integers, it's initial state consists of an array of 625 integers.
Cryptography is arguably the fields with the most demanding PRNG requirements. Not
surprisingly, some of the best PRNG algorithms make use of encryption techniques, such as the
Advanced Encryption Standard.

4 The rand function (Scilab/Matlab)
The function call

X = rand();

in both Scilab and Matlab generates a random real number 0<x<1 . Subsequent calls return the
next number in the pseudo-random sequence. To generate an array with dimensions mXn use

x = rand(m,n);
On start up both Scilab and Matlab initialize the PRNG to a specific state. Therefore you will

always get the same sequence of numbers. In my current version of Scilab, on start up I will
always obtain the initial result

-->rand(3,1)
ans =

0.2113249
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0.7560439
0.0002211
while in my current version of Matlab, on start up I will always obtain the initial result
>> rand(3,1)

ans =

0.8147
0.9058
0.1270
To start off at a different place in the sequence you can “seed” the PRNG as follows

-->rand ('seed',i0); //Scilab
>> rand('twister',i0); %Matlab

where i, is an integer in the range 0<i,< 2% It can actually be useful to generate the same

“random” number on separate occasions because it allows interesting simulation results to be
repeated. However, sometimes you want pseudo-random numbers that are different each time
your open and run a program. One way to get a unique seed each time you run a program is to
generate it from the system clock. Recommended ways to do this are

-->rand ('seed',getdate('s')); //Scilab
>> rand ('twister',sum(100*clock)); %Matlab

4.1 The grand function (Scilab)

The Scilab rand () function is based on a LCG while the Matlab version uses the superior
Mersenne twister algorithm. In Scilab the twister algorithm is available in the grand ()
function. This is used as follows

-->grand (3,1, 'def"')
ans =

0.8147237

0.135477
0.9057919

to produce a 3-by-1 array. The 'de f' string indicates that you want the returned value to be from
the default distribution which is uniform over 0 <x<1 . To seed this PRNG use the command

-->grand ('setsd',i0);

As with the rand () function you can use the system clock as an ever-changing seed

-->grand('setsd',getdate('s')):

5 The probability density function and histograms

We say that the probability density function (pdf) of a random variable x is f (x) if the
probability that x will take on a value x,<x=<x, is

Prob{x1SxSx2}=f f.(x)dx
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So far we have used the rand () and grand () functions to produce x values uniformly
distributed over 0 <x <1 . The ideal uniform pdf is

1 0=<x<l
= 7
f’”(x) 0 otherwise )

Let's test this by generating a large number of random values and then plotting a histogram of the
data. To generate a histogram we first divide the x interval of interest into a number of
subintervals or bins. Let's take our bins to be 0<x<0.05, 0.05<x<0.10, 0.10<x<0.15 and
so on up to 0.95<x<1.00. We then count how many x samples fall in each bin. This number

divided by the total number of samples is an estimate of _f f.(x)dx over the bin. Dividing by
the width of the bin (0.05 in our case) we get an estimate of the average value of f (x) for that
bin.

Generating a histogram plot in Scilab is as simple as

histplot (nbins, x);

where nbins is the number of equal-sized bins we want in the interval [x,,,x,.]. As the

number of samples increases a histogram should give a progressively better estimate of the
underlying pdf of the random (or pseudo-random) process. Running the commands

x = grand(le3,1, 'def');
histplot (20,x);

and
x = grand(le6,1, 'def');
histplot (20, x) ;

produced the results shown in Fig. 3. We see that the pdf does approach the ideal uniform
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Fig. 3: histograms of x = grand(le3,1,'def') and x = grand(le6,1,'def');
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distribution as the number of samples gets large enough.

6 Need for random variables with non-uniform pdf

The uniform distribution (7) is only one possible pdf. We often need to generate random numbers
with some specific pdf in order to simulate a certain physical process. A few examples are:

6.1 Normal distribution

This is the classic “bell curve” (also called the Gaussian distribution)

fy(y)—Le_;(y‘jM

The normal distribution is specified by two parameters: w is the mean value (average) of y and
O 1is the standard deviation. The Central Limit Theorem tells us that any process that is the sum
or average of a large number of independent, identically distributed processes will be normally
distributed. Since so many natural phenomena have this property, the normal distribution finds
wide application. In particular “noise” in measurements is often assumed to be normally
distributed.

6.2 Exponential distribution

The power received by a cell phone (or other wireless device) in very “cluttered” environment
where the field is scattered many times is described by the exponential distribution

I —pip,

fP(P):P—e , P>0 (8)

ayv

Here P, is the average received power. To simulate a wireless communication channel we need
to be able to generate exponentially distributed random values to model “fading” effects.

6.3 Maxwell-Boltzman distribution

In a gas in thermal equilibrium at temperature 7, the probability that a molecule will have
velocity v is given by the Maxwell-Boltzmann distribution

2 |V
£ulv)=—2 (l e() , v=0 )
T[Vp Vp
where
vpz\/—ZkT (10)
m

is the most likely velocity (the peak of the pdf). Here m is the molecular mass and £ is
Boltzmann's constant. We need to generate samples from this distribution if we wish to perform
molecular dynamics simulations.

7 Generating random variables with an arbitrary pdf

Suppose x is a uniformly distributed random variable of the type we discussed above with pdf
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given by (7). Now define a random variable y as

} X
Fig. 4. f (x)Ax~f,(y)Ay
y=g(x) (a1
with
a=g(0) , b=g(1) (12)

This is illustrated in Fig. 4. We want to find the pdf of y over the interval a<y<b . An x interval
of width Ax will correspond to a y interval of width Ay, and y will fall in the Ay interval if
and only if x falls in the Ax interval. Therefore we can equate the probabilities

fx)ax~f (y)Ay (13)
Since f.(x)=1 we have the differential relation
dx=f,(y)dy (14)

Integrating this from 0 to x on the left and correspondingly from a to y on the right, we have

x=[de=] £ (y)dy=F (y)

where F y(x) is called the cumulative distribution function (cdf) of the random variable y.
Inverting this relation

x=F,(y) (15)
we get y=g(x) .

For example, the exponential distribution (8) has cdf

e Mrdp=1—e""" (16)

obag

1
Pav

vl

. —ylP,, .
Solving x=1—e gives us

y=—P_ In(1—x) (17)
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Fig. 5: Histograms of exponentially distributed random values generated by y=—4In(1—x) and ideal pdf.
In Fig. 5 we show histograms of y=—4In(1—x) where x is a uniform random variable. Given
enough sample points the histogram approximates the ideal pdf very well.

Unfortunately, for some pdfs it is not possible to calculate the cdf. Arguably the most important
example is the normal distribution. The integral

1[y—u ’
y _1fy-
1 2( (4]

_ I,
27[0_006 Y (18)

F(y)

cannot be evaluated in terms of elementary functions. However, it is possible to transform two
independent, uniformly distributed random variables x,,x, into two independent normally

distributed random variables y,, y, using the Box-Muller transform. We first calculate the polar
coordinates

r=yV—2Inx,,0=2mnx,
and then y,, y, are the rectangular coordinates
y,=rcos0, y,=rsin0

For the values x,,x, we can use two sequential values from a PRNG. Fig. 6 shows histograms

obtained by applying the Box-Muller transform to 10° (left) and 10° (right) values of the
rand () function and compares these with the ideal normal distribution. With enough samples
the agreement is excellent.

The Box-Muller transform produces y values with w=0,0=1. To change these we perform an
additional transform

z=0y+u (19)

Then z has mean p and standard deviation G.
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Fig. 6: Histograms of zero-mean, unit-variance, normally distributed random values generated by the
Box-Muller transform and ideal pdf.

In Matlab the randn () function is similar to the rand () function but generates normal
random values with u=0,0=1. In Scilab the grand() function can generate arrays of normal
random variables with specified w, 0 when called as follows

Y = grand(m, n, 'nor', Av, Sd);

For example

-->grand (2,3, 'nor',2,1)
ans =

1.5434479 3.5310142 1.172681
0.7914453 1.459521 3.5340618

8 References
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http://en.wikipedia.org/wiki/Random number generation
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9 Appendix — Scilab code

9.1 Linear congruential generator

000  /////// 7/ S S SSS S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSSSS S
0002 // randLCG.sci

0003 // 2014-12-08, Scott Hudson, for pedagocic purposes

0004 // 32-bit linear congruential generator for generating uniformly

0005 // distributed real numbers 0<=x<I.

0006  ///// /S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSS
0007 global randLCGseed randLCGa randLCGc

0008 randLCGseed = uint32(0);

0009

0010 function x=randLCG (seed)

0011 global randLCGseed randLCGa randLCGc

0012 [nargout,nargin] = argn();

0013 if (nargin==1) //if there is an argument, use it as the seed
0014 randLCGseed = uint32 (seed) ;

0015 end

0016 randLCGseed = uint32 (1664525) *randLCGseed+uint32 (1013904223) ;
0017 x = double (randLCGseed) /4294967296.0;

0018 endfunction

9.2 Multiply-with-carry method

0001  ///// /777 S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SS
0002 // randMwC.sci

0003 // 2014-12-08, Scott Hudson, for pedagocic purposes

0004 // Multiply-with-carry algorithm for pseudo-random number generation.
0005 // Retuns uniformly distributed real number 0<x<I.

0006 // Reference: http://en.wikipedia.org/wiki/Random number generation
0007  J//// /7SS S S S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS SSSS
0008 global randMWCsl randMWCs2

0009 randMWCsl = uint32(1);

0010 randMWCs2 = uint32(2);

0011

0012 function x=randMWC (seedl, seed2)

0013 global randMWCsl randMWCs?2

0014 [nargout,nargin] = argn();

0015 if (nargin==2) //if there are arguments, use as seeds
0016 randMWCsl = uint32 (seedl); //should not be zero!
0017 randMWCs2 = uint32 (seed2); //should not be zero!
0018 end

0019 s = uint32(2716);

0020 randMWCsl = 36969*modulo (randMWCsl, s) +randMWCsl/s;
0021 randMWCs2 = 18000*modulo (randMWCs2, s) +randMWCs2/s;
0022 x = double (randMWCsl*s+randMWCs2) /4294967296.0;

0023 endfunction
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