
Lecture 23
Random numbers

1 Introduction

1.1 Motivation

Scientifically an event is considered random if it is unpredictable. Classic examples are a coin
flip, a die roll and a lottery ticket drawing. For a coin flip we can associate 1 with “heads” and 0
with “tails,” and a sequence of coin flips then produces a random sequence of binary digits.
These can be taken to describe a random integer. For example, 1001011 can be interpreted as the
binary number corresponding to

1(26
)+0 (25

)+0(24
)+1(23

)+0(22
)+1(21

)+1(20
)=64+8+2+1=75 (1)

For a lottery drawing we can label n tickets with the numbers 0, 1, 2,… , n−1 . A drawing then
produces a random integer  i with  0≤i≤n−1 . In these and other ways random events can be
associated with corresponding random numbers.

Conversely, if we are able to generate random numbers we can use those to represent random
events or phenomena, and this can very useful in engineering analysis and design. Consider the
design of a bridge structure. We have no direct control over what or how many vehicles drive
across the bridge or  what  environmental  conditions  it  is  subject  to.  A good way to uncover
unforeseen problems with a design is to simulate it being subject to a large number of random
conditions, and this is one of the many motivations for developing random number generators.
How can we be sure our design will function properly? By the way, if you doubt this is a real
problem, read up on the Tacoma Narrows bridge which failed spectacularly due to wind forces
alone [1]. 

1.2 “Truly random” numbers

In classical physics, nothing is  fundamentally “random.” In Principle  the present state of the
universe  combined  with  physical  laws  exactly  determines the  future  state  of  the  universe.
Classical physics is strictly deterministic. In principle if we knew the positions and velocities of a
pair of dice thrown in the air, their physical properties and the properties of the surface on which
they will land, we could predict what numbers they will show by solving the equations of motion.
However,  in  practice the behavior  of  the  dice-plus-table  system is  so complicated  that  even
extremely small  changes  in  the  initial  conditions  or  the  properties  of  the  dice  will  cause  a
significant change in their final state. There are many chaotic systems that display this so-called
butterfly  effect [Error:  Reference source not  found].  For practical  purposes these are random
events, even in a deterministic universe.

According to quantum mechanics there are truly random phenomena at the atomic scale. For
example, it is not possible, even in principle, to predict when a radioactive nucleus will decay.
We can only make statements about the probability of its doing so during a certain time interval.
For  this  reason  quantum  effects  are  arguably the  ultimate  way to  generate  “truly random”
numbers, and the fields of quantum random number generation and quantum cryptography are
areas of active research and development. 

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 23: Random numbers 2/12

In the past sequences of random numbers, generated by some random physical process, were
published as books. In fact the book A Million Random Digits with 100,000 Normal Deviates,
produced by the Rand Corporation in 1955, is still  in print (628 pages of “can't put it down”
reading!) as of 2014. It is still the case that if a sequence of truly random numbers is desired they
must be obtained from some physical random process. One can buy plug-in cards that sample
voltages generated by thermal noise in an electronic circuit (such as described at  onerng.info),
and the website random.org generates random numbers by sampling radio-frequency noise in the
atmosphere. 

1.3 Pseudo-random numbers

A properly functioning computer  is  a strictly deterministic  system. Given the same data  and
instructions it will produce the same output every time. Therefore it is impossible for a computer
to generate truly random numbers. Instead we have to be content with the generation of pseudo-
random numbers. A computer program that generates a sequence of such numbers is called a
pseudo-random number generator (PRNG).

A sequence of numbers is pseudo-random if it “looks like” a random sequence. More rigorously
there are various statistical  tests  available  to quantify how “random looking” the output of a
PRNG is. Until recently the so-called “diehard tests” [2] were a common software tool for this
purpose.  More  recently  the  National  Institute  of  Standards  and  Technology has  released  a
random-number toolkit [3].

Consider the following sequence of numbers

0 1 2 3 4 5 6 7

There  appears  to  be  nothing  random about  this  sequence;  it  follows  an  obvious  pattern  of
incrementing by one. Of course it's possible that a random sequence of numbers just happened to
form this pattern by chance, but intuitively that's not very likely. On the other hand the sequence

1 6 7 4 5 2 3 0

which contains the same eight digits does look somewhat random, although it doesn't take long to
notice an add-one and subtract-three pattern in the last seven digits. In fact it was generated by a
algorithm which is every bit as deterministic as “increment by one,” and to which we now turn.

2 Linear congruential generators
The expression

y=x  (mod m) (2)

read “y equals x modulo m,” means that y is the remainder when x is divided by m. For example

3=11 (mod 4) (3)

because

11
4

=
8+3

4
=2  remainder 3 (4)

In Scilab/Matlab we can calculate this using the command

y = x-int(x/m)*m

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 23: Random numbers 3/12

which subtracts off an integer number times n from x leaving the remainder. More directly

-->modulo(11,4) //Scilab
 ans  =
    3. 

>> mod(11,4) %Matlab
ans =
     3

Another way to think of this is that  x  (mod m)  is the least-significant digit of  x expressed in
base-m. For example 127 (mod 10)=7 , and 13 (mod 8)=5  because 13=1⋅81

+5⋅80
=158 . 

If  x (mod m)= y (mod m)  we say “x is congruent to y modulo m” and we write

x≡ y (mod m) (5)

A linear congruential generator (LCG) is a simple method for generating a permutation of the
integers 0≤i≤m−1  using modular arithmetic. Starting with a seed value x0 , with 0≤x0<m , a
LCG generates a sequence x1 , x2 ,… , xm  with

xn+1=(a xn+c ) (mod m) (6)

Provided the constants  a and  c are properly chosen this will be a permutation of the integers
0≤i≤m−1 . If m is a power of 2, then c must be odd and a must be one more than a multiple of
4. For example, if m=23

=8 , a=5,c=1  and x0=0 , then x1 , x2 ,… , x8  is the permutation

1 6 7 4 5 2 3 0

because

(0+1) mod 8=1 , (5⋅1+1) mod8=6 , (5⋅6+1) mod 8=31 mod 8=7 ,

 (5⋅7+1) mod 8=36 mod 8=4 , (5⋅4+1) mod 8=21 mod 8=5 ,

(5⋅5+1) mod8=26 mod 8=2 , (5⋅2+1) mod 8=11 mod 8=3

and (5⋅3+1) mod 8=16 mod8=0

Since x8=x0=0  the permutation will then repeat with x9=x1=1  and so on.  If we used a seed
value of x0=4  then we would get the sequence

5 2 3 0 1 6 7 4 

which is the same sequence starting from a different digit. A LCG with given a and c values will
always produce the same sequence, and using a different seed value will simply start us off at a
different location in the sequence. 

A repeating sequence of eight numbers is probably not of much use, but in practice we use a
large value of  m, quite commonly m=232  corresponding to a “32-bit unsigned integer” which
are conveniently implemented in digital  hardware.  Fig. 1 shows plots of sequences generated
with m=210

=1024  and parameters a=5 , c=1  (left) and a=9 , c=1  (right). Ten samples from
the latter sequence

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 23: Random numbers 4/12

    532 693 94 847 456 9 82 739 508 477
 

don't display an immediately obvious sequential relationship. In Fig. 1 we plot both sequences in
full. In the left graph some of the samples form a very noticeable diagonal line pattern which is a
strong indication that the data are almost certainly not truly random. The right plot lacks such a
glaring “red flag.” However, on closer inspection one can see repeated patterns throughout the
image (indicated by polygons). It is extremely unlikely that a truly random sequence of numbers
would exhibit  such a pattern, and a LCG is unacceptable for a demanding PRNG application
such as cryptography. 

In engineering applications we usually want random real numbers x instead of random integers i.
We can easily generate real numbers 0≤x<1  from integers 0≤i≤m−1  by calculating

x=
i
m

Of course there will only be a discrete set of m such real numbers with spacing 1/m , but if m is
large enough this can provide a good approximation to a “real random number generator.” In
many programming languages (including Scilab) the command

x = rand();

generates a “random” real number x with 0≤x<1  using this method. 

LCGs  are  simple  to  implement  and  for  many  years  were  the  “standard”  PRNGs  in  many
computer  programming languages. For simple engineering design and analysis  tasks they are
often “good enough.” A Scilab LCG implementation appears in the appendix.  Note that  this
makes  explicit  use  of  32-bit  unsigned integers.  Arithmetic  performed  with  this  data  type  is
inherently modulo 232 . 

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1: Output of linear congruential generator ( vertical vs. n horizontal) with m=1024, starting with seed
value x0=0 . (left) a=5, c=1; (right) a=9,c=1. Repeated patterns are a strong indication that these are not
truly random sequences.



Lecture 23: Random numbers 5/12

3 More advanced pseudo-random number generators
Various methods have been developed to try and improve on the LCG method. The multiply-
with-carry method, roughly speaking, generates two LCG sequences combined with some “bit
masking” and “bit shifting” and combines these to produce a pseudo-random output. A Scilab
implementation is given in the Appendix and a plot of 100,000 samples is shown in  Fig. 2.
Currently one of the most commonly used improved algorithm is called the Mersenne twister [5],
and both Scilab  and Matlab have implementations  of  this.  This  algorithm is  fairly complex.
Instead  of  one  or  two  seed  integers,  it's  initial  state  consists  of  an  array  of  625  integers.
Cryptography  is  arguably  the  fields  with  the  most  demanding  PRNG  requirements.  Not
surprisingly, some of the best PRNG algorithms make use of encryption techniques, such as the
Advanced Encryption Standard.

4 The rand function (Scilab/Matlab)
The function call

x = rand();

in both Scilab and Matlab generates a random real number 0≤x<1 . Subsequent calls return the
next number in the pseudo-random sequence. To generate an array with dimensions m×n  use

x = rand(m,n);

On start up both Scilab and Matlab initialize the PRNG to a specific state. Therefore you will
always get the same sequence of numbers. In my current version of Scilab, on start up I will
always obtain the initial result

-->rand(3,1)
 ans  =
 
    0.2113249  

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 2: 100,000 samples of the multiply-with-carry PRNG.



Lecture 23: Random numbers 6/12

    0.7560439  
    0.0002211  

while in my current version of Matlab, on start up I will always obtain the initial result

>> rand(3,1)
ans =

    0.8147
    0.9058
    0.1270

To start off at a different place in the sequence you can “seed” the PRNG as follows

-->rand('seed',i0); //Scilab
>> rand('twister',i0); %Matlab

where  i0  is an integer in the range  0≤i 0<232 . It can actually be useful to generate the same
“random” number on separate occasions because it allows interesting simulation results to be
repeated. However, sometimes you want pseudo-random numbers that are different each time
your open and run a program. One way to get a unique seed each time you run a program is to
generate it from the system clock. Recommended ways to do this are

-->rand('seed',getdate('s')); //Scilab
>> rand('twister',sum(100*clock)); %Matlab

4.1 The grand function (Scilab)

The Scilab  rand() function is based on a LCG while the Matlab version uses the superior
Mersenne  twister  algorithm.  In  Scilab  the  twister  algorithm  is  available  in  the  grand()
function. This is used as follows

-->grand(3,1,'def')
 ans  =
 
    0.8147237  
    0.135477   
    0.9057919  

to produce a 3-by-1 array. The 'def' string indicates that you want the returned value to be from
the default distribution which is uniform over 0≤x<1 . To seed this PRNG use the command

-->grand('setsd',i0);

As with the rand() function you can use the system clock as an ever-changing seed

-->grand('setsd',getdate('s'));

5 The probability density function and histograms
We say that  the  probability  density  function (pdf)  of  a  random variable  x is  f x( x)  if  the
probability that x will take on a value x1≤x≤ x2  is

Prob{x1≤x≤x2 }=∫
x1

x2

f x ( x)dx

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 23: Random numbers 7/12

So far  we  have  used  the  rand() and  grand() functions  to  produce  x values  uniformly
distributed over 0≤x<1 . The ideal uniform pdf is

f x( x)={1 0≤x<1
0 otherwise

(7)

Let's test this by generating a large number of random values and then plotting a histogram of the
data.  To  generate  a  histogram  we  first  divide  the  x interval  of  interest  into  a  number  of
subintervals or bins. Let's take our bins to be 0≤x<0.05 , 0.05≤ x<0.10 , 0.10≤x<0.15  and
so on up to 0.95≤ x<1.00 . We then count how many x samples fall in each bin. This number
divided by the total number of samples is an estimate of ∫ f x (x)dx  over the bin. Dividing by
the width of the bin (0.05 in our case) we get an estimate of the average value of f x( x)  for that
bin. 

Generating a histogram plot in Scilab is as simple as

histplot(nbins,x);

where  nbins is the number of equal-sized bins we want in the interval  [ xmin , xmax] . As the
number  of  samples  increases  a  histogram should  give  a  progressively better  estimate  of  the
underlying pdf of the random (or pseudo-random) process. Running the commands

x = grand(1e3,1,'def');
histplot(20,x);

and

x = grand(1e6,1,'def');
histplot(20,x);

produced the results  shown in  Fig.  3.  We see that  the pdf does  approach the ideal  uniform

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 3: histograms of  x = grand(1e3,1,'def') and x = grand(1e6,1,'def');



Lecture 23: Random numbers 8/12

distribution as the number of samples gets large enough. 

6 Need for random variables with non-uniform pdf
The uniform distribution (7) is only one possible pdf. We often need to generate random numbers
with some specific pdf in order to simulate a certain physical process. A few examples are:

6.1 Normal distribution

This is the classic “bell curve” (also called the Gaussian distribution)

f y ( y)=
1

2πσ
e
−

1
2( y−μ

σ )
2

 , −∞< y<∞

The normal distribution is specified by two parameters: μ  is the mean value (average) of y and
σ  is the standard deviation. The Central Limit Theorem tells us that any process that is the sum

or average of a large number of independent, identically distributed processes will be normally
distributed. Since so many natural phenomena have this property, the normal distribution finds
wide  application.  In  particular  “noise”  in  measurements  is  often  assumed  to  be  normally
distributed. 

6.2 Exponential distribution

The power received by a cell phone (or other wireless device) in very “cluttered” environment
where the field is scattered many times is described by the exponential distribution

f P (P )=
1

Pav

e
−P /P av  , P≥0 (8)

Here Pav  is the average received power. To simulate a wireless communication channel we need
to be able to generate exponentially distributed random values to model “fading” effects. 

6.3 Maxwell-Boltzman distribution

In a  gas  in  thermal  equilibrium at  temperature  T,  the  probability that  a  molecule  will  have
velocity v is given by the Maxwell-Boltzmann distribution

f v (v )=
4

√π v p
( v

v p)
2

e
−( v

v p
)

2

 , v≥0 (9)

where

v p=√ 2kT
m

(10)

is  the  most  likely  velocity  (the  peak  of  the  pdf).  Here  m is  the  molecular  mass  and  k is
Boltzmann's constant. We need to generate samples from this distribution if we wish to perform
molecular dynamics simulations. 

7 Generating random variables with an arbitrary pdf
Suppose x is a uniformly distributed random variable of the type we discussed above with pdf

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 23: Random numbers 9/12

given by (7). Now define a random variable y as

y=g ( x) (11)

with

a=g (0)  , b=g (1) (12)

This is illustrated in Fig. 4. We want to find the pdf of y over the interval a≤ y≤b . An x interval
of width Δx  will correspond to a y interval of width Δ y , and y will fall in the Δ y  interval if
and only if x falls in the Δx  interval. Therefore we can equate the probabilities

f x( x)Δx≈ f y ( y)Δ y (13)

Since f x( x)=1  we have the differential relation

dx= f y ( y )dy (14)

Integrating this from 0 to x on the left and correspondingly from a to y on the right, we have

x=∫
0

x

dx=∫
a

y

f y( y )dy=F y( y)

where  F y( x)  is  called  the  cumulative  distribution  function  (cdf)  of  the  random variable  y.
Inverting this relation 

x=F y ( y) (15)

we get y=g ( x) . 

For example, the exponential distribution (8) has cdf 

∫
0

y
1

Pav

e−P /P av dP=1−e− y / Pav (16)

Solving x=1−e− y /P av  gives us

y=−Pav ln(1−x) (17)

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 4: f x (x)Δx≈ f y ( y)Δ y



Lecture 23: Random numbers 10/12

In Fig. 5 we show histograms of y=−4 ln(1−x)  where x is a uniform random variable. Given
enough sample points the histogram approximates the ideal pdf very well.

Unfortunately, for some pdfs it is not possible to calculate the cdf. Arguably the most important
example is the normal distribution. The integral

F y( y)=
1

2πσ
∫
−∞

y

e
−

1
2( y−μ

σ )
2

dy (18)

cannot be evaluated in terms of elementary functions. However, it is possible to transform two
independent,  uniformly  distributed  random  variables  x1 , x2  into  two  independent  normally
distributed random variables y1 , y2  using the Box-Muller transform. We first calculate the polar
coordinates

r=√−2 ln x1 ,θ=2π x2

and then y1 , y2  are the rectangular coordinates

y1=r cosθ , y2=r sinθ

For the values x1 , x2  we can use two sequential values from a PRNG. Fig. 6 shows histograms

obtained by applying the Box-Muller  transform to  103  (left)  and  106  (right)  values  of  the
rand() function and compares these with the ideal normal distribution. With enough samples
the agreement is excellent. 

The Box-Muller transform produces y values with μ=0 ,σ=1 . To change these we perform an
additional transform

z=σ y+μ (19)

Then z has mean m and standard deviation s. 

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 5: Histograms of exponentially distributed random values generated by y=−4 ln(1−x)  and ideal pdf.



Lecture 23: Random numbers 11/12

In Matlab  the  randn() function  is  similar  to  the  rand() function  but  generates  normal
random values with  μ=0 ,σ=1 . In Scilab the grand() function can generate arrays of normal
random variables with specified μ ,σ  when called as follows

Y = grand(m, n, 'nor', Av, Sd);

For example

-->grand(2,3,'nor',2,1)
 ans  =
 
    1.5434479    3.5310142    1.172681   
    0.7914453    1.459521     3.5340618 

8 References
1. Tacoma Narrows bridge failure: https://www.youtube.com/watch?v=j-zczJXSxnw

2. http://en.wikipedia.org/wiki/Diehard_tests

3. http://csrc.nist.gov/groups/ST/toolkit/random_number.html

4. http://en.wikipedia.org/wiki/Random_number_generation

5. http://en.wikipedia.org/wiki/Mersenne_twister

6. http://en.wikipedia.org/wiki/List_of_probability_distributions

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 6: Histograms of zero-mean, unit-variance, normally distributed random values generated by the 
Box-Muller transform and ideal pdf.



Lecture 23: Random numbers 12/12

9 Appendix – Scilab code

9.1 Linear congruential generator
0001  //////////////////////////////////////////////////////////////////////
0002  // randLCG.sci
0003  // 2014-12-08, Scott Hudson, for pedagocic purposes
0004  // 32-bit linear congruential generator for generating uniformly
0005  // distributed real numbers 0<=x<1. 
0006  //////////////////////////////////////////////////////////////////////
0007  global randLCGseed randLCGa randLCGc
0008  randLCGseed = uint32(0);
0009  
0010  function x=randLCG(seed)
0011    global randLCGseed randLCGa randLCGc
0012    [nargout,nargin] = argn();
0013    if (nargin==1) //if there is an argument, use it as the seed
0014      randLCGseed = uint32(seed);
0015    end
0016    randLCGseed = uint32(1664525)*randLCGseed+uint32(1013904223);
0017    x = double(randLCGseed)/4294967296.0;
0018  endfunction

9.2 Multiply-with-carry method
0001  //////////////////////////////////////////////////////////////////////
0002  // randMWC.sci
0003  // 2014-12-08, Scott Hudson, for pedagocic purposes
0004  // Multiply-with-carry algorithm for pseudo-random number generation.
0005  // Retuns uniformly distributed real number 0<x<1. 
0006  // Reference: http://en.wikipedia.org/wiki/Random_number_generation
0007  //////////////////////////////////////////////////////////////////////
0008  global randMWCs1 randMWCs2
0009  randMWCs1 = uint32(1);
0010  randMWCs2 = uint32(2);
0011  
0012  function x=randMWC(seed1,seed2)
0013    global randMWCs1 randMWCs2
0014    [nargout,nargin] = argn();
0015    if (nargin==2) //if there are arguments, use as seeds
0016      randMWCs1 = uint32(seed1); //should not be zero!
0017      randMWCs2 = uint32(seed2); //should not be zero!
0018    end
0019    s = uint32(2^16);
0020    randMWCs1 = 36969*modulo(randMWCs1,s)+randMWCs1/s;
0021    randMWCs2 = 18000*modulo(randMWCs2,s)+randMWCs2/s;
0022    x = double(randMWCs1*s+randMWCs2)/4294967296.0;
0023  endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18


	1 Introduction
	1.1 Motivation
	1.2 “Truly random” numbers
	1.3 Pseudo-random numbers

	2 Linear congruential generators
	3 More advanced pseudo-random number generators
	4 The rand function (Scilab/Matlab)
	4.1 The grand function (Scilab)

	5 The probability density function and histograms
	6 Need for random variables with non-uniform pdf
	6.1 Normal distribution
	6.2 Exponential distribution
	6.3 Maxwell-Boltzman distribution

	7 Generating random variables with an arbitrary pdf
	8 References
	9 Appendix – Scilab code
	9.1 Linear congruential generator
	9.2 Multiply-with-carry method


