
Lecture 22
Numerical integration

1 Introduction
The derivative of any elementary function can be calculated explicitly as an elementary function.
However, the anti-derivative of an elementary function may not be expressible as an elementary
function. Therefore situations arise where the value of a definite integral

I =∫
a

b

f ( x)dx (1)

must be either approximated analytically or calculated numerically, even if  f is an elementary
function. If f is a numerical function, or if we only have samples of f, then numerical integration
is our only option.

There are two cases we will consider.

Case 1. We are given n samples of the function (x i , y i) , i=1,2,… , n . We cannot evaluate
f (x )  for any other values of x. 

Case 2. We can evaluate f (x )  for any value of x.

In Case 1 our options  are somewhat  limited while in Case 2 we have the freedom (and the
burden) of deciding how many and which values of x to evaluate f (x )  at. We briefly deal with
Case 1 in the next section and then devote the rest of the lecture to Case 2.

2 Integration of sampled data
Fig. 1 illustrates our problem in Case 1. We have  n samples  (x i , y i) ,  x1=a< x2<⋯< xn=b .
They  may  be  uniformly  spaced,  with  x i+1=x i+h ,  or  non-uniformly  spaced.  A  reasonable
approach is to estimate f (x )  by interpolating these data and integrate that interpolation. In our
study of interpolation techniques we learned that cubic splines provide the smoothest possible
function which passes through  n given points.  A cubic function can be explicitly integrated.
Therefore an attractive option is to interpolate our data with cubic splines and use the integral of
the spline interpolation as an estimate of the integral of the underlying function  f (x ) . Scilab
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Fig. 1: Integration of sampled data by integrating an interpolated function.
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provides the intsplin function to do just this. Its usage is

I = intsplin(x,y);

where  x,y are the arrays of  x and  y samples, the integration is from  x1  to  xn , and  I is the
estimate of the integral. As an example, the following integral can be calculated exactly

I =∫
0

3

e−x sin (π x )dx=
π

π
2
+1

(1+e−3
)=0.3034152 ... (2)

Eleven samples of  f (x )  (Fig. 2) passed to  intsplin estimated  I with an error of less than
1%. 

deff('y=f(x)','y=exp(-x).*sin(%pi*x)');
n = 11;
x = linspace(0,3,n);
y = f(x);
I = intsplin(x,y);
disp('I = '+string(I));

 I = 0.3057043  

If no additional  information  is  available,  this  is  typically about  as  good as  we can do with
sampled data, especially if the sampling is non-uniform. However, suppose we know from the
physics of the problem that f (x )  has to be of the form a e−bx sin(cx ) . Then the best approach
would be to estimate a,b,c using a least-squares fit and integrate a e−bx sin(cx ) .
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Fig.  2: Eleven samples of  f ( x)=e−x sin (π x)  over  0≤x≤3  used with the  intsplin

function to estimate I=∫0

3
f ( x)dx .



Lecture 22: Numerical integration 3/15

3 Midpoint (rectangle) rule
Now we turn to Case 2 where we can evaluate  f (x )  as desired. The advantage we have over
Case 1 is that we can increase the number of sample points and use the change in the value of I to
estimate the error in our calculation. 

The midpoint rule can be thought of as integration of a nearest-neighbor interpolation (Fig. 3).
We divide the interval a≤ x≤b  into n sub-intervals of width h=(b−a )/n . This width h is our
step size. We sample f (x )  at the midpoint of each interval. Treating the function as a constant,
the integral over one interval is  f (x )h , the area of a rectangle of height  f (x )  and width  h.
Adding the contributions of all n intervals we have

I≈∑
i=1

n

f (a+[ i−1/2 ]h)h  where h=
b−a

n
(3)

The midpoint rule is conceptually simple. In it is nothing more than a Riemann sum such as is
typically used in calculus textbooks to define a definite integral. It has the advantage that f (x )
is not evaluated at x=a ,b , so it can be applied to functions which are singular at one or both
endpoints, such as

∫
0

1
dx

√ x
(4)

4 Trapezoid rule
The trapezoid rule approximates  f (x )  using linear interpolation (Fig. 4). The integral is then
the  sum of  areas  of  trapezoids.  If  the  left  and right  heights  of  a  trapezoid  are  f (x i)  and
f (x i+h)  then the trapezoid's area is

I =
h
2
[ f ( xi)+ f ( x i+h)] (5)

(the average height times the width). Adding up all these areas we have
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Fig. 3 Integration using the midpoint rule.
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I (h)=
h
2

[ f (a )+ f (a+h)]+
h
2

[ f (a+h)+ f (a+2 h)]+
h
2

[ f (a+2h)+ f (a+3h)]

                                   +⋯+
h
2

[ f (a+[n−1] h)+ f (b)]
(6)

Notice that except for f (a ) , f (b) , all the function values appear twice in the sum. Therefore

I (h)=h[ 1
2

f (a )+ f (a+h)+ f (a+2h)+⋯+ f (a+[n−1]h)+
1
2

f (b)] (7)

or

I (h)=h[ f (a )+ f (b)

2
+∑

i=1

n−1

f (a+ih)] (8)

is the formula for integration by the trapezoid method. 

It is highly desirable to have some idea of the accuracy of a numerical integration. A reasonable
error estimate can be obtained by comparing one integration to a second with twice as many
samples (half the step size)

ϵest=| I (h/2)−I (h)|

In order to achieve a desired tolerance then we can iteratively halve h until this error estimate is
less than the tolerance.

Suppose a=0 , b=1  and our first iteration of the trapezoid rule uses h=1 . Then we will need
samples of f at x=0 , 1 . As shown in Fig. 5, if for the second iteration we take h=1/2  we will
need samples at x=0 /2 ,1/ 2 ,2 /2 . But we will have already sampled x=0=0/ 2 ,1=2/2 . If the
third iteration has  h=1/4  we will  need samples at  x=0 /4 ,1 /4 ,2/4 ,3/4 ,4 /4 , but we will
have already sampled at x=0 /4=0/2=0 ,2/4=1/2 ,4/4=2 /2=1 . In fact at each iteration only
the odd-numbered samples are new. If at the fourth iteration we take h=1/8 , we only need to
sample at x=1/8 ,3 /8 ,5 /8 ,7/8 . In other words, if we break the sum in (8) into even and odd
samples
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Fig. 4: Integration using the trapezoid rule.
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∑
i=1

n−1

f (a+ih)=∑
i=1
even

n−1

f (a+ih)+∑
i=1
odd

n−1

f (a+ih) (9)

the sum of even samples has already been calculated in the previous iteration. We only need to
multiply the previous iteration value by 1/2 (since h is being halved) and add in the new (odd)
samples

I (h)=
1
2

I (2 h)+h∑
i=1
odd

n−1

f (a+ih) (10)

Our complete algorithm then reads

Algorithm for trapezoid-rule integration with error estimate

  n=1 , h=(b−a ) , I =
h
2

[ f (a)+ f (b)]

  repeat until converged

    I old= I , n ←2 n , h=(b−a )/n

    I =
1
2

I old+h∑
i=1
odd

n−1

f (a+ih)

    converged if  |I −I old|<tol

A Scilab implementation of this is given in the Appendix as function  intTrapezoid. The
trapezoid rule is  second-order accurate,  that is,  the error varies as  h2 .  Halving the step size
reduces the error by a factor of 1/4. 
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Fig. 5: Repeating the trapezoid rule at 1/2 the step
size results in all “even” samples being identical to
samples from the previous calculation.
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Example 1.  I =∫
0

3

e−x sin (π x )dx  estimated with intTrapezoid with desired

error of no more than 10−3 .

deff('y=f(x)','y=exp(-x)*sin(%pi*x)');
Iex = (%pi/(%pi^2+1))*(1+exp(-3)); //exact value
I = intTrapezoid(f,0,3,1e-3);
disp([Iex,I]);

0.3034152    0.3032642  

The integration is  indeed accurate to  three decimal  places.  This  required 129
function evaluations.

5 Simpson's rule
Simpson's rule integrates a quadratic interpolation of groups of three sampled function values.
Suppose we want to estimate

I =∫
a

b

f (x)dx (11)

using  h=(b−a )/2  and  the  three  samples  y1= f (a ) , y2= f (a+h) , y3= f (a+2h=b) .  Let
x=a+th . Then a≤ x≤b  corresponds to 0≤t≤2  and dx=hdt  so that

I =h∫
0

2

f (a+th)dt (12)

Representing  f (a+th)  by  the  Lagrange  interpolating  polynomial  through  the  points
(t=0, y1) ,( t=1, y2) ,(t=2, y3)  and integrating we find

I =h∫
0

2

[ 1
2

y3 t( t−1)− y2 t (t−2)+
1
2

y1(t−1)(t−2)]dt=
h
3
( y1+4 y2+ y3) (13)

To apply this result in general (Fig. 6) we arrange our samples  x1 , x2 , x3 , x4 ,…  into adjacent
groups of three

(x1 , x2 , x3) ,( x3 , x4 , x5) ,(x5 , x6 , x7) ,… (14)

(this  only works  if  we have  an  odd number  of  samples,  which  implies  an  even number  of
intervals). We then apply (13)

I =
h
3

[( y1+4 y2+ y3)+( y3+4 y4+ y5)+( y5+4 y6+ y7)+⋯+( yn−2+4 yn−1+ yn)] (15)

Notice that samples at group boundaries, such as  y3  and  y5 , appear twice in the summation.
Therefore

I =
h
3

[ y1+4 y2+2 y3+4 y4+2 y5+4 y6+2 y7+⋯+2 yn−2+4 yn−1+ yn ] (16)

Simpson's rule is fourth-order accurate (error varies as h4 ). Simpson's rule applied to the eleven

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 22: Numerical integration 7/15

samples of Fig. 2 gave the estimate I =0.3044273 .

Rules  based  on  cubic  interpolation  of  four-point  groups  (Simpson's  3/8  rule),  quartic
interpolation  of  five-point  groups  (Boole's  rule),  and  even  high-order  interpolations  exist.
Together these are referred to as  Newton-Cotes formulas. These formulas were of considerable
interest in the past when calculations had to be done by hand. 

An interesting way to view Simpson's rule is as follows. Suppose we have two samples of a
function: y1= f (a)  and y3= f (b) . The trapezoid rule with h=(b−a )  gives

I 1=
b−a

2
[ y1+ y3 ] (17)

Suppose we add a sample between the other two:  y2= f ((a+b)/2) . The trapezoid rule with
h=(b−a )/2  applied to these three samples gives us

I 2=
b−a

4
[ y1+2 y2+ y3 ] (18)

Now

4 I 2−I 1

4−1
=

b−a
3 [ y1+2 y 2+ y3−

1
2
( y1+ y3)]=b−a

3 [ 1
2

y1+2 y2+
1
2

y3]
              =

b−a
6

[ y1+4 y2+ y3]

(19)

is Simpson's rule with  h=(b−a )/2 . We see that if we have one trapezoid-rule estimate  I 1

using a step size 2h  and a second I 2  using step size h, then Simpson's rule with step size h can
be calculated as

I =
4 I 2− I 1

3
(20)

Simpson's rule can be thought of as a weighted combination of trapezoid rules with different step
sizes. This idea is generalized by Romberg integration.

6 Romberg integration
Neglecting round-off error, the trapezoid rule would (in principle) produce an exact result in the
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Fig. 6: Simpson's rule integration.
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limit h→0 . Let's call the exact result I 0 . For arbitrary h let's denote the trapezoid-rule estimate
by I (h) . Then  I 0=I (0) . For small but finite  h,  I (h)  will equal the exact result plus some
error, and the error will be a function of the step size h. We can write

I (h)=I 0+a h2
+bh4

+⋯ (21)

(It can be shown that the error is an even function of h and therefore involves only even powers.)
Romberg integration is a technique that allows us to subtract off the error terms a h2 , b h4 ,… .

Applying the trapezoid rule with step size h /2  we get

I (h/2)= I 0+a h2
/4+b h4

/16+⋯ (22)

We don't know the value of the coefficient a, so we don't know the first error terms in (21) and
(22). However, we do know that for any value of a

4 (a h2
/ 4)=a h2 (23)

This allows us to write

4 I (h/2)− I (h)
4−1

=I 0−b h4
/4+⋯ (24)

We have just removed the h2  error term! Two second-order accurate trapezoid-rule calculations
have been combined to produce a fourth-order accurate result. In fact, as we saw above, this is
just Simpson's rule. 

Now run the trapezoid rule with step size h /4  to get

I (h/ 4)=I 0+a h2
/16+bh4

/256+⋯ (25)

Once again the h2  error term is 1/4  the value of the previous iteration, and we can calculate

4 I (h/ 4)−I (h/2)

4−1
=I 0−bh4

/64+⋯ (26)

Now we have two results, (24) and (26), that are fourth-order accurate (both are Simpson's rule
calculations). Furthermore, notice that although we don't know the value of the coefficient b, we
do know that

16(b h4
/64)=b h4

/ 4 (27)

Therefore

42
( I 0−b h4

/64)−(I 0−bh4
/4)

42
−1

=I 0+⋯ (28)

and we have eliminated both the h2  and h4  error terms! This result is sixth-order accurate. We
can continue on in this manner to produce a result accurate to as high an order as we wish. 

Here is a useful notation that will allow us to easily code Romberg integration. Define

R( j ,1)=I (b−a

2 j−1 ) (29)

so that R(1,1)=I (b−a) , R(2,1)= I ((b−a)/2) , R(3,1)=I ((b−a )/4)  and so on. Stack these
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into a one-dimensional array

[
R(1,1)
R(2,1)
R(3,1)] (30)

Now calculate

R(2,2)=
4 R(2,1)−R(1,1)

4−1
(31)

and

R(3,2)=
4 R(3,1)−R(2,1)

4−1
(32)

Just as for (24) and (26), R(2,2)  and R(3,2)  will be fourth-order accurate results, lacking the
h2  error term. Place these in the second column of our array

[
R(1,1) 0
R(2,1) R(2,2)

R(3,1) R(3,2)] (33)

Now calculate

R(3,3)=
42 R(3,2)−R(2,2)

42
−1

(34)

As for (28) this will be sixth-order accurate, lacking both the h2  and h4  terms. Place this in the
third column of our array

[
R(1,1) 0 0
R(2,1) R(2,2) 0
R(3,1) R(3,2) R(3,3)] (35)

The relation between an element in the kth column and the elements in the previous column is

R( j , k )=
4(k −1) R( j , k−1)−R( j−1,k−1)

4(k−1)
−1

(36)

Suppose we want an eight-order accurate result. Calculate  R(4,1)= I ((b−a)/8)  and then use
formula (36) to calculate R(4,2) , R(4,3) , R(4,4)  to obtain 

[
R(1,1) 0 0 0
R(2,1) R(2,2) 0 0
R(3,1) R(3,2) R(3,3) 0
R(4,1) R(4,2) R(4,3) R(4,4)

] (37)

Our eight-order accurate estimate is  R(4,4) . We can continue to add rows in this manner as
many times as desired. The difference R(4,4)−R(3,3)  provides an error estimate. Adding these
calculations to the trapezoid-rule algorithm results in

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 22: Numerical integration 10/15

Algorithm for Romberg integration with error estimate

n=1 , h=(b−a ) , I =
h
2

[ f (a)+ f (b)] , j=1 , R( j ,1)=I

repeat until converged

I old= I , n ←2n , h=(b−a )/n

I =
1
2

I old+h∑
i=1
odd

n−1

f (a+ih)

j ← j+1 , R( j ,1)=I

for k=2,3,...,j

R( j , k )=
w R( j , k−1)−R( j−1, k−1)

w−1
 , w=4k −1

converged if |R( j , j)−R( j−1, j−1)|<tol

A Scilab implementation of this appears in the Appendix as intRomberg. 

Example  2.  I =∫
0

3

e−x sin (π x )dx  estimated  with  intTrapezoid and

intRomberg with desired error of no more than 10−6 .

global nCalls

function y = f(x)
  global nCalls
  nCalls = nCalls+1;
  y=exp(-x)*sin(%pi*x);
endfunction

Iex = (%pi/(%pi^2+1))*(1+exp(-3)); //exact result

nCalls = 0;
I = intTrapezoid(f,0,3,1e-6);
disp([Iex,I,nCalls]);

nCalls = 0;
I = intRomberg(f,0,3,1e-6);
disp([Iex,I,nCalls]);

    0.3034152    0.3034151    4097.   
    0.3034152    0.3034152    65. 

4097  function  calls  were  required  by the  trapezoid  rule  while  only 65  were
needed for Romberg integration. The trapezoid rule error was 1.5⋅10−7  while the
Romberg integration error was 7.2⋅10−11 . 
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7 Gaussian quadrature
“Quadrature” is an historic term used to describe integration. So far we've assumed  f (x )  is
uniformly  sampled  along  the  x axis.  The  idea  behind  Gaussian  quadrature  is  to  consider
arbitrarily placed x samples. To see why this is a good idea consider the following function

f (x )=a+b x2
+c x4 (38)

and its integral

I =∫
−1

1

f (x)dx=2(a+
1
3

b+
1
5

c) (39)

(Note: the integral of an odd power of  x over  −1≤x≤1  vanishes, hence we don't bother to
include odd powers in  f (x ) .)  Suppose we are allowed to estimate  I using three samples of
f (x ) . We could use Simpson's rule to get

I Simpson=
1
3

[ f (−1)+4 f (0)+ f (1)]=
1
3

[(a+b+c)+4a+(a+b+c)]=2(a+
1
3

b+
1
3

c) (40)

The a and b terms are correct but the c term is not. This is not surprising since Simpson's rule
interpolates the three samples with a quadratic. This is exact for a quadratic function, but the
presence of the  x4  results in error. Now consider the following combination of three  f (x )
samples 

    
I Gauss=

1
9 [5 f (−√ 3

5)+8 f (0)+5 f (√ 3
5)]=1

9 [(5a+3b+
9
5

c)+(8 a )+(5a+3b+
9
5

c)]
         =2(a+

1
3

b+
1
5

c)
(41)

This result is exact, I Gauss=I , even though it required only three samples. It turns out that if you
properly choose the n sample points x i  and corresponding weights w i  you can make

∑
i=1

n

wi f (x i)=∫
−1

1

f (x)dx

for  f (x )  an arbitrary polynomial  of  order  2n−1 .  The  x i  turn out  to  be roots  of  certain
polynomials, and the formulas for the x i  and w i  are fairly involved. 

8 The intg (Scilab) and quadgk (Matlab) functions
Scilab and Matlab provide state-of-the-art numerical integration functions. Both are based on a

version of Guassian quadrature called Gauss–Kronrod quadrature. In Scilab  I =∫
a

b

f (x)dx  is

estimated using

I = intg(a,b,f);

The default tolerance is very small. To specify the tolerance use

[I,err] = intg(a,b,f,tol);
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Optional output variable  err is an estimate of the absolute error. In Matlab the corresponding
function is

I = quadgk(f,a,b);

To use intg in the console you first need to define a function f (x ) . For example

-->deff('y=f(x)','y=exp(-x)*sin(%pi*x)');
-->I = intg(0,3,f)
 I  =

    0.3034152  

Example 3. I =∫
0

3

e−x sin (π x )dx  was estimated in Scilab using

deff('y=f(x)','y=exp(-x)*sin(%pi*x)');
I = intg(0,3,f,1e-6)
I  = 
    0.3034152 

Only 21 function calls were required to produce a result with error of “0,” i.e.,
the  exact  result  and  the  intg result  were  equal  to  within  double  precision
accuracy.

The integrate function convenient allows you to skip the deff statement as it accepts the
function and variable of integration as string arguments

-->I = integrate('exp(-x)*sin(%pi*x)','x',0,3)
 I  =
    0.3034152  

9 Improper integrals
An integral is  improper if the integrand has a singularity within the integration interval.  For
example

∫
0

1
sin x

x
dx (42)

Here the integrand in undefined at x=0  where it has a 0/0  form. In fact lim
x→0

sin x
x

=1 , so one

could “define away” the problem with

f (x )={
sin x

x
x≠0

1 x=0
(43)

On the other hand the integrand of

∫
0

1
1

√1−x2
dx=π

2
(44)

becomes infinite as x →1 . In either case a solution would be an integration technique that avoids
evaluating the function at the endpoints. The midpoint rule is a simple example of this type of so-
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called “open” integration formula. The  Gauss–Kronrod quadrature method used by intg and
quadgk is also an open formula and will work for functions with singularities at one or both
endpoints. For example

-->integrate('sin(x)/x','x',0,1)
 ans  =
 
    0.9460831   

-->integrate('1/sqrt(1-x^2)','x',0,1)
 ans  =
 
    1.5707963 

For a singularity at x=c , a<c<b , we can break the integral into two

∫
a

b

f (x )dx=∫
a

c

f (x)dx+∫
c

b

f ( x)dx

Another type of improper integral is one with an infinite limit of integration, such as

∫
0

∞

x3 e−x dx=6 (45)

One way to treat an integral of this type is by using a change of variable such as

x=−ln(1−u) (46)

For u=0 , x=0  and as u →1 , x →∞ . The differential is

dx=
du

1−u
(47)

Conveniently e−x
=1−u , so that e−x dx=du , and the integral becomes 

∫
0

1

(−ln (1−u))
3 du (48)

This is also improper because as u →1 , x=−ln (1−u)→∞  but an open integration formula can
evaluate it

-->integrate('(-log(1-u))^3','u',0,1)
 ans  =
 
    6.  

10 References
1. http://en.wikipedia.org/wiki/Numerical_integration
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11 Appendix – Scilab code

11.1 Trapezoid rule
0001  //////////////////////////////////////////////////////////////////////
0002  // intTrapezoid.sci
0003  // 2014-11-15, Scott Hudson, for pedagogic purposes
0004  // Trapezoid rule estimation of integral of f(x) from a to b 
0005  // Estimated error is <= tol
0006  //////////////////////////////////////////////////////////////////////
0007  function I=intTrapezoid(f, a, b, tol)
0008    n = 1;
0009    h = (b-a);
0010    I = (h/2)*(f(a)+f(b));
0011    converged = 0;
0012    while (~converged)
0013      Iold = I;
0014      n = 2*n;
0015      h = (b-a)/n;
0016      I = 0;
0017      for i=1:2:n-1 //i=1,3,5,... odd values
0018        I = I+f(a+i*h);
0019      end
0020      I = 0.5*Iold+h*I;
0021      if (abs(I-Iold)<=tol)
0022        converged = 1;
0023      end
0024    end
0025  endfunction
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11.2 Romberg integration
0001  //////////////////////////////////////////////////////////////////////
0002  // intRomberg.sci
0003  // 2014-11-15, Scott Hudson, for pedagogic purposes
0004  // Romberg integration of f(x) from a to b 
0005  // Estimated error is <= tol
0006  //////////////////////////////////////////////////////////////////////
0007  function I=intRomberg(f, a, b, tol)
0008    n = 1;
0009    h = (b-a);
0010    I = (h/2)*(f(a)+f(b));
0011    j = 1;
0012    R(j,j) = I;
0013    converged = 0;
0014    while (~converged)
0015      Iold = I;
0016      n = 2*n;
0017      h = (b-a)/n;
0018      I = 0;
0019      for i=1:2:n-1 //i=1,3,5,... odd values
0020        I = I+f(a+i*h);
0021      end
0022      I = 0.5*Iold+h*I;
0023      j = j+1;
0024      R(j,1) = I;
0025      for k=2:j
0026        w = 4^(k-1);
0027        R(j,k) = (w*R(j,k-1)-R(j-1,k-1))/(w-1);
0028      end
0029      if (abs(R(j,j)-R(j-1,j-1))<=tol)
0030        converged = 1;
0031      end
0032    end
0033    I = R(j,j);
0034  endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18


	1 Introduction
	2 Integration of sampled data
	3 Midpoint (rectangle) rule
	4 Trapezoid rule
	5 Simpson's rule
	6 Romberg integration
	7 Gaussian quadrature
	8 The intg (Scilab) and quadgk (Matlab) functions
	9 Improper integrals
	10 References
	11 Appendix – Scilab code
	11.1 Trapezoid rule
	11.2 Romberg integration


