
Lecture 22
Numerical integration

1 Introduction
The derivative of any elementary function can be calculated explicitly as an elementary function.
However, the anti-derivative of an elementary function may not be expressible as an elementary
function. Therefore situations arise where the value of a definite integral

I =∫
a

b

f (x)dx (1)

must be either approximated analytically or calculated numerically, even if f is an elementary
function. If f is a numerical function, or if we only have samples of f, then numerical integration
is our only option.

There are two cases we will consider.

Case 1. We are given n samples of the function (x i , y i) , i=1,2,… , n . We cannot evaluate
f (x) for any other values of x.

Case 2. We can evaluate f (x) for any value of x.

In Case 1 our options are somewhat limited while in Case 2 we have the freedom (and the
burden) of deciding how many and which values of x to evaluate f (x) at. We briefly deal with
Case 1 in the next section and then devote the rest of the lecture to Case 2.

2 Integration of sampled data
Fig. 1 illustrates our problem in Case 1. We have n samples (x i , y i) , x1=a< x2<⋯< xn=b .
They may be uniformly spaced, with x i+1=x i+h , or non-uniformly spaced. A reasonable
approach is to estimate f (x) by interpolating these data and integrate that interpolation. In our
study of interpolation techniques we learned that cubic splines provide the smoothest possible
function which passes through n given points. A cubic function can be explicitly integrated.
Therefore an attractive option is to interpolate our data with cubic splines and use the integral of
the spline interpolation as an estimate of the integral of the underlying function f (x) . Scilab

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1: Integration of sampled data by integrating an interpolated function.

Lecture 22: Numerical integration 2/15

provides the intsplin function to do just this. Its usage is

I = intsplin(x,y);

where x,y are the arrays of x and y samples, the integration is from x1 to xn , and I is the
estimate of the integral. As an example, the following integral can be calculated exactly

I =∫
0

3

e−x sin (π x)dx=
π

π
2
+1

(1+e−3
)=0.3034152 ... (2)

Eleven samples of f (x) (Fig. 2) passed to intsplin estimated I with an error of less than
1%.

deff('y=f(x)','y=exp(-x).*sin(%pi*x)');
n = 11;
x = linspace(0,3,n);
y = f(x);
I = intsplin(x,y);
disp('I = '+string(I));

 I = 0.3057043

If no additional information is available, this is typically about as good as we can do with
sampled data, especially if the sampling is non-uniform. However, suppose we know from the
physics of the problem that f (x) has to be of the form a e−bx sin(cx) . Then the best approach
would be to estimate a,b,c using a least-squares fit and integrate a e−bx sin(cx) .

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 2: Eleven samples of f (x)=e−x sin (π x) over 0≤x≤3 used with the intsplin

function to estimate I=∫0

3
f (x)dx .

Lecture 22: Numerical integration 3/15

3 Midpoint (rectangle) rule
Now we turn to Case 2 where we can evaluate f (x) as desired. The advantage we have over
Case 1 is that we can increase the number of sample points and use the change in the value of I to
estimate the error in our calculation.

The midpoint rule can be thought of as integration of a nearest-neighbor interpolation (Fig. 3).
We divide the interval a≤ x≤b into n sub-intervals of width h=(b−a)/n . This width h is our
step size. We sample f (x) at the midpoint of each interval. Treating the function as a constant,
the integral over one interval is f (x)h , the area of a rectangle of height f (x) and width h.
Adding the contributions of all n intervals we have

I≈∑
i=1

n

f (a+[i−1/2]h)h where h=
b−a

n
(3)

The midpoint rule is conceptually simple. In it is nothing more than a Riemann sum such as is
typically used in calculus textbooks to define a definite integral. It has the advantage that f (x)
is not evaluated at x=a ,b , so it can be applied to functions which are singular at one or both
endpoints, such as

∫
0

1
dx

√ x
(4)

4 Trapezoid rule
The trapezoid rule approximates f (x) using linear interpolation (Fig. 4). The integral is then
the sum of areas of trapezoids. If the left and right heights of a trapezoid are f (x i) and
f (x i+h) then the trapezoid's area is

I =
h
2
[f (xi)+ f (x i+h)] (5)

(the average height times the width). Adding up all these areas we have

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 3 Integration using the midpoint rule.

Lecture 22: Numerical integration 4/15

I (h)=
h
2

[f (a)+ f (a+h)]+
h
2

[f (a+h)+ f (a+2 h)]+
h
2

[f (a+2h)+ f (a+3h)]

 +⋯+
h
2

[f (a+[n−1] h)+ f (b)]
(6)

Notice that except for f (a) , f (b) , all the function values appear twice in the sum. Therefore

I (h)=h[1
2

f (a)+ f (a+h)+ f (a+2h)+⋯+ f (a+[n−1]h)+
1
2

f (b)] (7)

or

I (h)=h[f (a)+ f (b)

2
+∑

i=1

n−1

f (a+ih)] (8)

is the formula for integration by the trapezoid method.

It is highly desirable to have some idea of the accuracy of a numerical integration. A reasonable
error estimate can be obtained by comparing one integration to a second with twice as many
samples (half the step size)

ϵest=| I (h/2)−I (h)|

In order to achieve a desired tolerance then we can iteratively halve h until this error estimate is
less than the tolerance.

Suppose a=0 , b=1 and our first iteration of the trapezoid rule uses h=1 . Then we will need
samples of f at x=0 , 1 . As shown in Fig. 5, if for the second iteration we take h=1/2 we will
need samples at x=0 /2 ,1/ 2 ,2 /2 . But we will have already sampled x=0=0/ 2 ,1=2/2 . If the
third iteration has h=1/4 we will need samples at x=0 /4 ,1 /4 ,2/4 ,3/4 ,4 /4 , but we will
have already sampled at x=0 /4=0/2=0 ,2/4=1/2 ,4/4=2 /2=1 . In fact at each iteration only
the odd-numbered samples are new. If at the fourth iteration we take h=1/8 , we only need to
sample at x=1/8 ,3 /8 ,5 /8 ,7/8 . In other words, if we break the sum in (8) into even and odd
samples

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 4: Integration using the trapezoid rule.

Lecture 22: Numerical integration 5/15

∑
i=1

n−1

f (a+ih)=∑
i=1
even

n−1

f (a+ih)+∑
i=1
odd

n−1

f (a+ih) (9)

the sum of even samples has already been calculated in the previous iteration. We only need to
multiply the previous iteration value by 1/2 (since h is being halved) and add in the new (odd)
samples

I (h)=
1
2

I (2 h)+h∑
i=1
odd

n−1

f (a+ih) (10)

Our complete algorithm then reads

Algorithm for trapezoid-rule integration with error estimate

 n=1 , h=(b−a) , I =
h
2

[f (a)+ f (b)]

 repeat until converged

 I old= I , n ←2 n , h=(b−a)/n

 I =
1
2

I old+h∑
i=1
odd

n−1

f (a+ih)

 converged if |I −I old|<tol

A Scilab implementation of this is given in the Appendix as function intTrapezoid. The
trapezoid rule is second-order accurate, that is, the error varies as h2 . Halving the step size
reduces the error by a factor of 1/4.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 5: Repeating the trapezoid rule at 1/2 the step
size results in all “even” samples being identical to
samples from the previous calculation.

Lecture 22: Numerical integration 6/15

Example 1. I =∫
0

3

e−x sin (π x)dx estimated with intTrapezoid with desired

error of no more than 10−3 .

deff('y=f(x)','y=exp(-x)*sin(%pi*x)');
Iex = (%pi/(%pi^2+1))*(1+exp(-3)); //exact value
I = intTrapezoid(f,0,3,1e-3);
disp([Iex,I]);

0.3034152 0.3032642

The integration is indeed accurate to three decimal places. This required 129
function evaluations.

5 Simpson's rule
Simpson's rule integrates a quadratic interpolation of groups of three sampled function values.
Suppose we want to estimate

I =∫
a

b

f (x)dx (11)

using h=(b−a)/2 and the three samples y1= f (a) , y2= f (a+h) , y3= f (a+2h=b) . Let
x=a+th . Then a≤ x≤b corresponds to 0≤t≤2 and dx=hdt so that

I =h∫
0

2

f (a+th)dt (12)

Representing f (a+th) by the Lagrange interpolating polynomial through the points
(t=0, y1) ,(t=1, y2) ,(t=2, y3) and integrating we find

I =h∫
0

2

[1
2

y3 t(t−1)− y2 t (t−2)+
1
2

y1(t−1)(t−2)]dt=
h
3
(y1+4 y2+ y3) (13)

To apply this result in general (Fig. 6) we arrange our samples x1 , x2 , x3 , x4 ,… into adjacent
groups of three

(x1 , x2 , x3) ,(x3 , x4 , x5) ,(x5 , x6 , x7) ,… (14)

(this only works if we have an odd number of samples, which implies an even number of
intervals). We then apply (13)

I =
h
3

[(y1+4 y2+ y3)+(y3+4 y4+ y5)+(y5+4 y6+ y7)+⋯+(yn−2+4 yn−1+ yn)] (15)

Notice that samples at group boundaries, such as y3 and y5 , appear twice in the summation.
Therefore

I =
h
3

[y1+4 y2+2 y3+4 y4+2 y5+4 y6+2 y7+⋯+2 yn−2+4 yn−1+ yn] (16)

Simpson's rule is fourth-order accurate (error varies as h4). Simpson's rule applied to the eleven

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 7/15

samples of Fig. 2 gave the estimate I =0.3044273 .

Rules based on cubic interpolation of four-point groups (Simpson's 3/8 rule), quartic
interpolation of five-point groups (Boole's rule), and even high-order interpolations exist.
Together these are referred to as Newton-Cotes formulas. These formulas were of considerable
interest in the past when calculations had to be done by hand.

An interesting way to view Simpson's rule is as follows. Suppose we have two samples of a
function: y1= f (a) and y3= f (b) . The trapezoid rule with h=(b−a) gives

I 1=
b−a

2
[y1+ y3] (17)

Suppose we add a sample between the other two: y2= f ((a+b)/2) . The trapezoid rule with
h=(b−a)/2 applied to these three samples gives us

I 2=
b−a

4
[y1+2 y2+ y3] (18)

Now

4 I 2−I 1

4−1
=

b−a
3 [y1+2 y 2+ y3−

1
2
(y1+ y3)]=b−a

3 [1
2

y1+2 y2+
1
2

y3]
 =

b−a
6

[y1+4 y2+ y3]

(19)

is Simpson's rule with h=(b−a)/2 . We see that if we have one trapezoid-rule estimate I 1

using a step size 2h and a second I 2 using step size h, then Simpson's rule with step size h can
be calculated as

I =
4 I 2− I 1

3
(20)

Simpson's rule can be thought of as a weighted combination of trapezoid rules with different step
sizes. This idea is generalized by Romberg integration.

6 Romberg integration
Neglecting round-off error, the trapezoid rule would (in principle) produce an exact result in the

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 6: Simpson's rule integration.

Lecture 22: Numerical integration 8/15

limit h→0 . Let's call the exact result I 0 . For arbitrary h let's denote the trapezoid-rule estimate
by I (h) . Then I 0=I (0) . For small but finite h, I (h) will equal the exact result plus some
error, and the error will be a function of the step size h. We can write

I (h)=I 0+a h2
+bh4

+⋯ (21)

(It can be shown that the error is an even function of h and therefore involves only even powers.)
Romberg integration is a technique that allows us to subtract off the error terms a h2 , b h4 ,… .

Applying the trapezoid rule with step size h /2 we get

I (h/2)= I 0+a h2
/4+b h4

/16+⋯ (22)

We don't know the value of the coefficient a, so we don't know the first error terms in (21) and
(22). However, we do know that for any value of a

4 (a h2
/ 4)=a h2 (23)

This allows us to write

4 I (h/2)− I (h)
4−1

=I 0−b h4
/4+⋯ (24)

We have just removed the h2 error term! Two second-order accurate trapezoid-rule calculations
have been combined to produce a fourth-order accurate result. In fact, as we saw above, this is
just Simpson's rule.

Now run the trapezoid rule with step size h /4 to get

I (h/ 4)=I 0+a h2
/16+bh4

/256+⋯ (25)

Once again the h2 error term is 1/4 the value of the previous iteration, and we can calculate

4 I (h/ 4)−I (h/2)

4−1
=I 0−bh4

/64+⋯ (26)

Now we have two results, (24) and (26), that are fourth-order accurate (both are Simpson's rule
calculations). Furthermore, notice that although we don't know the value of the coefficient b, we
do know that

16(b h4
/64)=b h4

/ 4 (27)

Therefore

42
(I 0−b h4

/64)−(I 0−bh4
/4)

42
−1

=I 0+⋯ (28)

and we have eliminated both the h2 and h4 error terms! This result is sixth-order accurate. We
can continue on in this manner to produce a result accurate to as high an order as we wish.

Here is a useful notation that will allow us to easily code Romberg integration. Define

R(j ,1)=I (b−a

2 j−1) (29)

so that R(1,1)=I (b−a) , R(2,1)= I ((b−a)/2) , R(3,1)=I ((b−a)/4) and so on. Stack these

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 9/15

into a one-dimensional array

[
R(1,1)
R(2,1)
R(3,1)] (30)

Now calculate

R(2,2)=
4 R(2,1)−R(1,1)

4−1
(31)

and

R(3,2)=
4 R(3,1)−R(2,1)

4−1
(32)

Just as for (24) and (26), R(2,2) and R(3,2) will be fourth-order accurate results, lacking the
h2 error term. Place these in the second column of our array

[
R(1,1) 0
R(2,1) R(2,2)

R(3,1) R(3,2)] (33)

Now calculate

R(3,3)=
42 R(3,2)−R(2,2)

42
−1

(34)

As for (28) this will be sixth-order accurate, lacking both the h2 and h4 terms. Place this in the
third column of our array

[
R(1,1) 0 0
R(2,1) R(2,2) 0
R(3,1) R(3,2) R(3,3)] (35)

The relation between an element in the kth column and the elements in the previous column is

R(j , k)=
4(k −1) R(j , k−1)−R(j−1,k−1)

4(k−1)
−1

(36)

Suppose we want an eight-order accurate result. Calculate R(4,1)= I ((b−a)/8) and then use
formula (36) to calculate R(4,2) , R(4,3) , R(4,4) to obtain

[
R(1,1) 0 0 0
R(2,1) R(2,2) 0 0
R(3,1) R(3,2) R(3,3) 0
R(4,1) R(4,2) R(4,3) R(4,4)

] (37)

Our eight-order accurate estimate is R(4,4) . We can continue to add rows in this manner as
many times as desired. The difference R(4,4)−R(3,3) provides an error estimate. Adding these
calculations to the trapezoid-rule algorithm results in

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 10/15

Algorithm for Romberg integration with error estimate

n=1 , h=(b−a) , I =
h
2

[f (a)+ f (b)] , j=1 , R(j ,1)=I

repeat until converged

I old= I , n ←2n , h=(b−a)/n

I =
1
2

I old+h∑
i=1
odd

n−1

f (a+ih)

j ← j+1 , R(j ,1)=I

for k=2,3,...,j

R(j , k)=
w R(j , k−1)−R(j−1, k−1)

w−1
 , w=4k −1

converged if |R(j , j)−R(j−1, j−1)|<tol

A Scilab implementation of this appears in the Appendix as intRomberg.

Example 2. I =∫
0

3

e−x sin (π x)dx estimated with intTrapezoid and

intRomberg with desired error of no more than 10−6 .

global nCalls

function y = f(x)
 global nCalls
 nCalls = nCalls+1;
 y=exp(-x)*sin(%pi*x);
endfunction

Iex = (%pi/(%pi^2+1))*(1+exp(-3)); //exact result

nCalls = 0;
I = intTrapezoid(f,0,3,1e-6);
disp([Iex,I,nCalls]);

nCalls = 0;
I = intRomberg(f,0,3,1e-6);
disp([Iex,I,nCalls]);

 0.3034152 0.3034151 4097.
 0.3034152 0.3034152 65.

4097 function calls were required by the trapezoid rule while only 65 were
needed for Romberg integration. The trapezoid rule error was 1.5⋅10−7 while the
Romberg integration error was 7.2⋅10−11 .

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 11/15

7 Gaussian quadrature
“Quadrature” is an historic term used to describe integration. So far we've assumed f (x) is
uniformly sampled along the x axis. The idea behind Gaussian quadrature is to consider
arbitrarily placed x samples. To see why this is a good idea consider the following function

f (x)=a+b x2
+c x4 (38)

and its integral

I =∫
−1

1

f (x)dx=2(a+
1
3

b+
1
5

c) (39)

(Note: the integral of an odd power of x over −1≤x≤1 vanishes, hence we don't bother to
include odd powers in f (x) .) Suppose we are allowed to estimate I using three samples of
f (x) . We could use Simpson's rule to get

I Simpson=
1
3

[f (−1)+4 f (0)+ f (1)]=
1
3

[(a+b+c)+4a+(a+b+c)]=2(a+
1
3

b+
1
3

c) (40)

The a and b terms are correct but the c term is not. This is not surprising since Simpson's rule
interpolates the three samples with a quadratic. This is exact for a quadratic function, but the
presence of the x4 results in error. Now consider the following combination of three f (x)
samples

I Gauss=

1
9 [5 f (−√ 3

5)+8 f (0)+5 f (√ 3
5)]=1

9 [(5a+3b+
9
5

c)+(8 a)+(5a+3b+
9
5

c)]
 =2(a+

1
3

b+
1
5

c)
(41)

This result is exact, I Gauss=I , even though it required only three samples. It turns out that if you
properly choose the n sample points x i and corresponding weights w i you can make

∑
i=1

n

wi f (x i)=∫
−1

1

f (x)dx

for f (x) an arbitrary polynomial of order 2n−1 . The x i turn out to be roots of certain
polynomials, and the formulas for the x i and w i are fairly involved.

8 The intg (Scilab) and quadgk (Matlab) functions
Scilab and Matlab provide state-of-the-art numerical integration functions. Both are based on a

version of Guassian quadrature called Gauss–Kronrod quadrature. In Scilab I =∫
a

b

f (x)dx is

estimated using

I = intg(a,b,f);

The default tolerance is very small. To specify the tolerance use

[I,err] = intg(a,b,f,tol);

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 12/15

Optional output variable err is an estimate of the absolute error. In Matlab the corresponding
function is

I = quadgk(f,a,b);

To use intg in the console you first need to define a function f (x) . For example

-->deff('y=f(x)','y=exp(-x)*sin(%pi*x)');
-->I = intg(0,3,f)
 I =

 0.3034152

Example 3. I =∫
0

3

e−x sin (π x)dx was estimated in Scilab using

deff('y=f(x)','y=exp(-x)*sin(%pi*x)');
I = intg(0,3,f,1e-6)
I =
 0.3034152

Only 21 function calls were required to produce a result with error of “0,” i.e.,
the exact result and the intg result were equal to within double precision
accuracy.

The integrate function convenient allows you to skip the deff statement as it accepts the
function and variable of integration as string arguments

-->I = integrate('exp(-x)*sin(%pi*x)','x',0,3)
 I =
 0.3034152

9 Improper integrals
An integral is improper if the integrand has a singularity within the integration interval. For
example

∫
0

1
sin x

x
dx (42)

Here the integrand in undefined at x=0 where it has a 0/0 form. In fact lim
x→0

sin x
x

=1 , so one

could “define away” the problem with

f (x)={
sin x

x
x≠0

1 x=0
(43)

On the other hand the integrand of

∫
0

1
1

√1−x2
dx=π

2
(44)

becomes infinite as x →1 . In either case a solution would be an integration technique that avoids
evaluating the function at the endpoints. The midpoint rule is a simple example of this type of so-

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 13/15

called “open” integration formula. The Gauss–Kronrod quadrature method used by intg and
quadgk is also an open formula and will work for functions with singularities at one or both
endpoints. For example

-->integrate('sin(x)/x','x',0,1)
 ans =

 0.9460831

-->integrate('1/sqrt(1-x^2)','x',0,1)
 ans =

 1.5707963

For a singularity at x=c , a<c<b , we can break the integral into two

∫
a

b

f (x)dx=∫
a

c

f (x)dx+∫
c

b

f (x)dx

Another type of improper integral is one with an infinite limit of integration, such as

∫
0

∞

x3 e−x dx=6 (45)

One way to treat an integral of this type is by using a change of variable such as

x=−ln(1−u) (46)

For u=0 , x=0 and as u →1 , x →∞ . The differential is

dx=
du

1−u
(47)

Conveniently e−x
=1−u , so that e−x dx=du , and the integral becomes

∫
0

1

(−ln (1−u))
3 du (48)

This is also improper because as u →1 , x=−ln (1−u)→∞ but an open integration formula can
evaluate it

-->integrate('(-log(1-u))^3','u',0,1)
 ans =

 6.

10 References
1. http://en.wikipedia.org/wiki/Numerical_integration

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 14/15

11 Appendix – Scilab code

11.1 Trapezoid rule
0001 //
0002 // intTrapezoid.sci
0003 // 2014-11-15, Scott Hudson, for pedagogic purposes
0004 // Trapezoid rule estimation of integral of f(x) from a to b
0005 // Estimated error is <= tol
0006 //
0007 function I=intTrapezoid(f, a, b, tol)
0008 n = 1;
0009 h = (b-a);
0010 I = (h/2)*(f(a)+f(b));
0011 converged = 0;
0012 while (~converged)
0013 Iold = I;
0014 n = 2*n;
0015 h = (b-a)/n;
0016 I = 0;
0017 for i=1:2:n-1 //i=1,3,5,... odd values
0018 I = I+f(a+i*h);
0019 end
0020 I = 0.5*Iold+h*I;
0021 if (abs(I-Iold)<=tol)
0022 converged = 1;
0023 end
0024 end
0025 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 22: Numerical integration 15/15

11.2 Romberg integration
0001 //
0002 // intRomberg.sci
0003 // 2014-11-15, Scott Hudson, for pedagogic purposes
0004 // Romberg integration of f(x) from a to b
0005 // Estimated error is <= tol
0006 //
0007 function I=intRomberg(f, a, b, tol)
0008 n = 1;
0009 h = (b-a);
0010 I = (h/2)*(f(a)+f(b));
0011 j = 1;
0012 R(j,j) = I;
0013 converged = 0;
0014 while (~converged)
0015 Iold = I;
0016 n = 2*n;
0017 h = (b-a)/n;
0018 I = 0;
0019 for i=1:2:n-1 //i=1,3,5,... odd values
0020 I = I+f(a+i*h);
0021 end
0022 I = 0.5*Iold+h*I;
0023 j = j+1;
0024 R(j,1) = I;
0025 for k=2:j
0026 w = 4^(k-1);
0027 R(j,k) = (w*R(j,k-1)-R(j-1,k-1))/(w-1);
0028 end
0029 if (abs(R(j,j)-R(j-1,j-1))<=tol)
0030 converged = 1;
0031 end
0032 end
0033 I = R(j,j);
0034 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

	1 Introduction
	2 Integration of sampled data
	3 Midpoint (rectangle) rule
	4 Trapezoid rule
	5 Simpson's rule
	6 Romberg integration
	7 Gaussian quadrature
	8 The intg (Scilab) and quadgk (Matlab) functions
	9 Improper integrals
	10 References
	11 Appendix – Scilab code
	11.1 Trapezoid rule
	11.2 Romberg integration

