
Lecture 21
Numerical differentiation

1 Introduction
We can analytically calculate the derivative of any elementary function, so there might seem to
be no motivation for calculating derivatives numerically. However we may need to estimate the
derivative of a numerical function, or we may only have a fixed set of sampled function values.
In these cases we need to estimate the derivative numerically.

2 Finite difference approximation
The definition of the derivative of a function  f (x )  that you will most often find in calculus
textbooks is

df
dx

=lim
h →0

f ( x+h)− f (x )

h
(1)

This immediately suggests the approximation

df
dx

≈
Δ f
Δx

=
f ( x+h)− f ( x)

h
(2)

where the  step size h is small but not zero. This is called a  finite difference. Specifically it's a
forward difference because  we  compare  the  function  value  at  x  with  its  value  at  a  point
“forward” of this along the x axis, x+h . 

How small should h be? Because of round-off error, smaller is not always better. Let's use Scilab
to estimate

d
dx

ex|
x=0

=1≈
eh

−e0

h
(3)

for various h values. The absolute error in the estimate vs. h is graphed in Fig. 1. As h decreases
from 10−1  down to 10−8  the error decreases also. However for h=10−9  and smaller the error
actually increases! The culprit is round-off error in the form of “the small difference of large
numbers.” Double precision arithmetic provides about 16 digits of precision. If  h≈10−16  then
eh

≈e0  to  16  digits  and the  difference  eh
−e0  will  be  very inaccurate.  When  h=10−8  the

difference eh
−e0  will be accurate to about 8 digits or about 10−8 , the point at which theoretical

improvement  in  numerical  accuracy is  offset  by higher  round-off  error.  We typically ignore
round-off error when estimating numerical accuracy, but round-off error needs to be kept in mind
when implementing any algorithm.

Let's investigate how the numerical accuracy of our estimate varies with step size h. Assume we
want to estimate the derivative of f (x )  at x=0 . Write f as a power series

f (x)= f (0)+∑
n=1

∞ 1
n!

f (n )
(0)xn (4)

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 21: Numerical differentiation 2/11

Then

f (h)− f (0)

h
=∑

n=1

∞ 1
n!

f (n)
(0)hn−1

= f
′
(0)+

1
2

f
″
(0)h+

1
6

f
‴
(0)h2

+⋯ (5)

For small h therefore

f (h)− f (0)

h
= f

′
(0)+

1
2

f
″
(0)h+⋯ (6)

and we say that the approximation is first-order accurate since the error (the second term on the
right) varies as the first power of  h. Decreasing  h by a factor  1/10  will decrease the error by
1/10 . However, as we see in Fig. 1 this is only true up to the point that round-off error begins to
be significant. For double precision  h≈10−8  is optimal. We can shift (6) along the x axis and
rearrange to obtain the general forward-difference formula

f
′
(x )=

f ( x+h)− f ( x)
h

+O(h) (7)

3 Higher-order formulas
The forward-difference approximation (6) uses two samples of the function, namely f (0)  and

f (h) . Using three samples we might be able to get a better estimate of  f
′
(0) . Suppose we

have  the  samples  f (−h) , f (0) , f (h) .  In  terms  of  the  power  series  representation  of  the
function these are

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1: Error in forward-difference estimation of derivative of e x  at x=0  vs. step size h.
As  h  decreases  from  10−1  to  10−8 ,  numerical  error  decreases  proportionally.  As  h
decreases further, round-off error begins to exceed numerical error. 



Lecture 21: Numerical differentiation 3/11

f (−h) = f (0)− f
′
(0)h+

1
2

f
″
(0)h2−

1
3!

f (3)(0)h3+
1
4!

f (4)(0)h4−
1
5!

f (5 )(0)h5+⋯

f (0) = f (0)

f (h) = f (0)+ f
′
(0)h+

1
2

f
″
(0)h2

+
1
3!

f (3)
(0)h3

+
1
4!

f (4 )
(0)h4

+
1
5!

f (5)
(0)h5

+⋯

(8)

Let's use a linear combination of these values to estimate f
′
(0)  as

f
′
(0)≈a f (−h)+b f (0)+c f (h) (9)

where  a , b , c  are unknown coefficients that we will choose to get the best possible estimate.
The sum a f (−h)+b f (0)+c f (h)  will include a term with a factor of f (0) . We want this to
vanish. This requires

(a+b+c) f (0)=0→a+b+c=0 (10)

which is one equation in three unknowns. Terms with a factor of f
′
(0)  should combine to give

the derivative value f
′
(0) . This requires

(−a+c) f
′
(0)h= f

′
(0)→−a+c=

1
h

(11)

We now have two equations in three unknowns. To get a third equation we can require the next

term, which contains a factor of f
″
(0)h2 , to vanish. This gives us the equation

(a+c)
1
2

f
″
(0)h2

=0 →a+c=0 (12)

Our three equations in three unknowns can be written as

(
1 1 1

−1 0 1
1 0 1)(

a
b
c)=(

0
1
h
0
)

The solution is

a=−
1

2h
,b=0 , c=

1
2h

and our approximation reads

f
′
(0)≈

f (h)− f (−h)

2 h

Using (8) we have

f (h)− f (−h)

2h
= f

′
(0)+

1
6

f (3)
(0)h2

+⋯

so  this  approximation  is  second-order  accurate.  Decreasing  h by a  factor  of  1/10  should
decrease the numerical error by a factor of 1/100 . Rearranging and writing this for an arbitrary
value of x we have the formula

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 21: Numerical differentiation 4/11

f
′
(x )=

f ( x+h)− f ( x−h)

2 h
+O(h2

) (13)

This type of finite difference is called a central difference since it uses both the forward sample
f (x+h)  and the backward sample f (x−h) . Scilab code is given in the Appendix.

The error in the central-difference approximation 

d
dx

ex|
x=0

=1≈
eh

−e−h

2h

is plotted in Fig. 2. Note how the error reduces more rapidly with decreasing h. This allows the
approximation to reach a greater accuracy before round-off error starts to become significant.
With h=10−5  the error is only about 10−11 . 

We  extend  this  idea  by  using  even  more  function  samples.  If  we  have  the  five  samples
f (−2 h) , f (−h) , f (0) , f (h) , f (2h)  we can form an estimate

f
′
(0)≈a f (−2 h)+b f (−h)+c f (0)+d f (h)+e f (2 h) (14)

This  has  five  unknowns,  so  we need to  form five  equations.  In  terms  of  the  Taylor  series
representation of f (x )  our five samples have the form

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 2: Error in central-difference estimate of derivative of e x  vs. h.



Lecture 21: Numerical differentiation 5/11

 

f (2h) = f (0)−2 f
′
(0)h+2 f

″
(0)h2−

8
3!

f (3)(0)h3+
16
4!

f (4 )(0)h4−
32
5!

f (5)(0)h5+⋯

f (−h) = f (0)−  f
′
(0)h+

1
2

f
″
(0)h2

−
1
3!

f (3)
(0)h3

+
1
4!

f (4)
(0)h4

−
1
5!

f (5)
(0)h5

+⋯

f (0) = f (0)

f (h) = f (0)+  f
′
(0)h+

1
2

f
″
(0)h2

+
1
3!

f (3)
(0)h3

+
1
4!

f (4)
(0)h4

+
1
5!

f (5)
(0)h5

+⋯

f (2h) = f (0)+2 f
′
(0)h+2 f

″
(0)h2

+
8
3!

f (3)
(0)h3

+
16
4!

f (4)
(0)h4

+
32
5!

f (5)
(0)h5

+⋯

(15)

To get the f (0)  terms in (14) to vanish requires

(a+b+c+d+e) f (0)=0→a+b+c+d+e=0 (16)

To get the f
′
(0)  terms to produce the value f

′
(0)  requires

(−2a−b+d +2e ) f
′
(0)h= f

′
(0)→−2a+b+d +2e=

1
h

(17)

The remaining three equations are obtained by requiring the f
″
(0) , f (3)

(0)  and f (4 )
(0)  terms

to vanish:

(2a+
b
2
+

d
2
+2e) f

″
(0)h2

=0→4 a+b+d +4e=0

1
3!

(−8a−b+d +8e) f (3)
(0)h3

=0 →−8a−b+d+8e=0

1
4!

(16a+b+d+16e ) f (4)
(0)h4

=0→16 a+b+d +16e=0

1
4!

(16+b+d +16 e) f (4)
(0)h4

=0 →16 a+b+d+16e=0

Our five equations in five unknowns form the system

(
1 1 1 1 1

−2 −1 0 1 2
4 1 0 1 4

−8 −1 0 1 8
16 1 0 1 16

)(
a
b
c
d
e
)=(

0
1
h
0
0
0
) (18)

which has the solution

a=
1

12 h
, b=−

8
12 h

, c=0 , d =
8

12 h
, e=−

1
12 h

(19)

Our approximation is therefore

f
′
(0)≈

f (−2 h)−8 f (−h)+8 f (h)− f (2 h)

12h
(20)

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 21: Numerical differentiation 6/11

Using (15) the f (5)
(0)  terms are

f (5)
(0)

h5

12 h⋅5!
(−32+8+8−32)=−

1
30

f (5)
(0)h4 (21)

so

f (−2 h)−8 f (−h)+8 f (h)− f (2 h)

12h
= f

′
(0)−

1
30

f (5)
(0)h4

+⋯ (22)

We see that this is a  fourth-order accurate approximation. Decreasing  h by a factor of  1/10
should decrease the numerical error by a factor of  1/10,000 . This is illustrated in  Fig. 3 for
f (x )=ex . For h=10−3  the error is only about 10−14 . 

For arbitrary x value our fourth-order central difference approximation is

f
′
( x)=

f (x−2 h)−8 f ( x−h)+8 f ( x+h)− f ( x+2 h)

12 h
+O(h4

) (23)

Scilab code is given in the Appendix.

4 The numderivative function (Scilab)
Scilab has a numerical derivative function named numderivative. To calculate the derivative
of the function f (x )  at x=x0  we execute

fp = numderivative(f,x0);

If f is a function several variables f (x) , then numderivative will return the gradient of f. It
is also possible to specify the step size h and the order of the approximation (1,2 or 4). 

fp = numderivative(f,x0,h,order);

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 3: Fourth-order accurate central-difference approximation to the derivative of e x . 



Lecture 21: Numerical differentiation 7/11

The default is second order (central difference) and Scilab chooses an “optimal” value of h. 

Some examples:

-->deff('y=f(x)','y=exp(-x)');

-->numderivative(f,1) //default central difference with optimal h
 ans  =
  - 0.3678794  //exact value is -exp(-1)=-0.3678794...

-->(f(1.1)-f(1))/0.1 //forward difference h=0.1
 ans  =
  - 0.3500836

-->numderivative(f,1,0.1,1) //forward difference h=0.1
 ans  =
  - 0.3500836

-->(f(1.1)-f(0.9))/0.2 //central difference h=0.1
 ans  = 
  - 0.3684929  
 
-->numderivative(f,1,0.1,2) //central difference h=0.1
 ans  =
  - 0.3684929  

In most cases the default suffices.

5 Second derivative

With reference to (8), if we want to approximate the second derivative f
″
(0)  as

f
″
(0)≈a f (−h)+b f (0)+c f (h) (24)

we would require

(a+b+c) f (0)=0→a+b+c=0 (25)

(−a+c) f
′
(0)h=0→−a+c=0 (26)

and

(a+c)
1
2

f
″
(0)h2

= f
″
(0)→a+c=

2

h2 (27)

The solution to these three equations is

a=c=
1

h2 , b=−
2

h2 (28)

and we find

f (h)−2 f (0)+ f (−h)

h2
= f

″
(0)+

1
12

f (4)
(0)h2

+⋯ (29)

so the approximation is second-order accurate. For arbitrary x value we have

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 21: Numerical differentiation 8/11

f
″
(x)=

f ( x+h)−2 f (x)+ f (x−h)

h2
+O (h2

) (30)

6 Partial derivatives

For a function f (x , y )  the partial derivative 
∂ f
∂ x

 can be defined as

∂ f
∂ x

=lim
h→0

f (x+h , y )− f (x , y)
h

that is, we hold y fixed and compute the derivative as if  f was only a function of  x. A central-
difference approximation is 

∂ f
∂ x

≈
f ( x+h , y)− f (x−h , y)

2 h
(31)

Likewise

∂ f
∂ y

≈
f ( x , y+h)− f ( x , y−h)

2h
(32)

and

∂
2 f

∂ x2
≈

f (x+h , y)−2 f (x , y )+ f (x−h , y )

h2
(33)

Mixed partial derivative approximations such as 
∂

2 f
∂ y∂ x

 can be developed in steps such as

∂
2 f

∂ y ∂ x
≈
[ ∂ f
∂ x ]y+h

−[∂ f
∂ x ]y−h

2h

           ≈

f (x+h , y+h)− f (x−h , y+h)

2h
−

f (x+h , y−h)− f (x−h , y−h)

2h
2h

            =
f ( x+h , y+h)− f (x−h , y+h)− f (x+h , y−h)+ f (x−h , y−h)

4 h2

(34)

7 Differential equations

7.1 Ordinary differential equations

An  ordinary  differential  equation (ODE) relates  a  single  independent  variable,  e.g.,  x,  to  a

function f (x )  and its derivatives f
′
(x ) , f

″
(x) ,… . Most physical laws are expressed in terms

of differential equations, hence their great importance. Certain classes of ODEs can be solved
analytically but  many cannot.  In either  case our  derivative  formulas  can be used to  develop
numerical solutions. 

Suppose a physical problem is described by a differential equation of the form

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 21: Numerical differentiation 9/11

f
″
+2 f

′
+17 f =0 (35)

One can verify that

f (x )=e−x cos(4 x) (36)

solves (35) by taking derivatives and substituting into the equation. A numerical approximation
to (35) is given by (using (30) and (13))

f ( x+h)−2 f ( x)+ f ( x−h)

h2 +2
f (x+h)− f (x−h)

2 h
+17 f (x)=0 (37)

Solving this for f (x+h)  we obtain

f (x+h)=
(2−17h2

) f (x )−(1−h) f ( x−h)

1+h
(38)

Let's use this to calculate  f (x )  for  x=0,h ,2 h ,3h ,… . To get started we need the first two
values

f (x1=0)=1 , f ( x2=h)=e−h cos (4h) (39)

Then we can apply (38) to get f (x3=x2+h) , f (x4= x3+h)  and so on as long as we wish. In
Scilab this looks something like

h = 0.1;
x = 0:h:5;
f(1) = 1;
f(2) = exp(-h)*cos(4*h);
for i=2:n-1
  y(i+1) = ((2-17*h^2)*y(i)-(1-h)*y(i-1))/(1+h);
end

The resulting numerical solution and the exact solution are shown in  Fig. 4. The agreement is
excellent.

Function  odeCentDiff in the Appendix uses this idea to numerically solve a second-order
equation of the form

y
″
+ p(x ) y

′
+q (x) y=r (x)

Given and initial  x value x1 , a step size h and the two function values y (x1)  and y (x1+h) .
Fig. 4 compares the numerical solution of (35) using odeCentDiff with the exact solution

y= f (x )=e−x cos (4 x ) (40)

for a step size h=0.1 .

7.2 Partial differential equations

A partial differential equation (PDE) relates two or more independent variables, e.g.,  x,y, to a

function  f (x , y )  and  its  partial  derivatives  
∂ f
∂ x

,
∂ f
∂ y

,
∂

2 f

∂ x2
,

∂
2 f

∂ x ∂ y
,… .  One  of  the  most

important PDEs is Laplace's equation

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 21: Numerical differentiation 10/11

∂
2 f

∂ x2
+

∂
2 f

∂ y2
=0 (41)

Numerically we can write

∂
2 f

∂ x2
+

∂
2 f

∂ y2

            ≈
f (x+h , y )−2 f (x , y )+ f ( x−h , y )

h2
+

f ( x , y+h)−2 f (x , y)+ f (x , y−h)

h2

            =
f ( x+h , y)+ f (x−h , y)+ f (x , y+h)+ f (x , y−h)−4 f ( x , y)

h2

(42)

The last expression is zero when

f (x , y )=
1
4

[ f (x+h , y )+ f (x−h , y )+ f (x , y+h)+ f ( x , y−h)] (43)

which relates the value f (x , y )  to its “neighboring” values. Specifically f (x , y )  is equal to
the average of its neighbor's values. 

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 4: Solid line: numerical solution of (35); circles: exact solution.



Lecture 21: Numerical differentiation 11/11

8 Appendix – Scilab code

8.1 2nd order central difference
0001  //////////////////////////////////////////////////////////////////////
0002  // derivSecondOrder.sci
0003  // 2014-11-15, Scott Hudson, for pedagogic purposes
0004  // Numerical estimation of derivative of f(x) using 2nd-order 
0005  // accurate central difference and "optimum" step size.
0006  //////////////////////////////////////////////////////////////////////
0007  function yp=derivSecondOrder(f, x)
0008    h = 1e-5*(1+abs(x)); //step size scales with x, no less than 1e-5
0009    yp = (f(x+h)-f(x-h))/(2*h);
0010  endfunction

8.2 4th order central difference
0001  //////////////////////////////////////////////////////////////////////
0002  // derivFourthOrder.sci
0003  // 2014-11-15, Scott Hudson, for pedagogic purposes
0004  // Numerical estimation of derivative of f(x) using 4th-order 
0005  // accurate central difference and "optimum" step size.
0006  //////////////////////////////////////////////////////////////////////
0007  function yp=derivFourthOrder(f, x)
0008    h = 1e-3*(1+abs(x)); //step size scales with x, no less than 1e-3
0009    yp = (f(x-2*h)-8*f(x-h)+8*f(x+h)-f(x+2*h))/(12*h);
0010  endfunction

8.3 Differential equation solver using 2nd order central difference
0001  //////////////////////////////////////////////////////////////////////
0002  // odeCentDiff.sci
0003  // 2014-11-15, Scott Hudson, for pedagogic purposes
0004  // Uses 2nd-order accurate central difference approximation to
0005  // derivatives to solve ode y''+p(x)y'+q(x)y=r(x)
0006  // approximations are
0007  // y' = (y(x+h)-y(x-h))/(2h) and y'' = (y(x+h)-2y(x)+y(x-h))/h^2 
0008  // p,q,r are functions, x1 is the initial x value, h is step size,
0009  // n is number of points to solve for, y1=y(x1), y2=y(x1+h).
0010  //////////////////////////////////////////////////////////////////////
0011  function [x, y]=odeCentDiff(p, q, r, x1, h, n, y1, y2)
0012    x = zeros(n,1);
0013    y = zeros(n,1);
0014    x(1) = x1;
0015    x(2) = x(1)+h;
0016    y(1) = y1;
0017    y(2) = y2;
0018    h2 = h*h;
0019    for i=2:n-1
0020      hp = h*p(x(i));
0021      x(i+1) = x(i)+h;
0022      y(i+1) = (2*h2*r(x(i))+(4-2*h2*q(x(i)))*y(i)+(hp-2)*y(i-1))/(2+hp);
0023    end
0024  endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18


	1 Introduction
	2 Finite difference approximation
	3 Higher-order formulas
	4 The numderivative function (Scilab)
	5 Second derivative
	6 Partial derivatives
	7 Differential equations
	7.1 Ordinary differential equations
	7.2 Partial differential equations

	8 Appendix – Scilab code
	8.1 2nd order central difference
	8.2 4th order central difference
	8.3 Differential equation solver using 2nd order central difference


