
Lecture 20
Curve fitting II

Introduction
In the previous lecture we developed a method to solve the general linear least-squares problem.

Given n samples (x i , y i) , the coefficients c j of a model

y= f (x)=∑
j=1

m

c j f j(x) (1)

are found which minimize the mean-squared error

MSE=1
n
∑
i=1

n

[y i− f (x i)]
2

(2)

The MSE is a quadratic function of the c j and best-fit coefficients are the solution to a system of
linear equations.

In this lecture we consider the non-linear least-squares problem. We have a model of the form

y= f (x ;c1 , c2 ,…, cm) (3)

where the c j are general parameters of the function f, not necessarily coefficients. An example
is fitting an arbitrary sine wave to data where the model is

y= f (x ;c1 , c2 , c3)=c1sin (c2 x+c3)

The mean-squared error

MSE (c1 ,… , cm)=
1
n
∑
i=1

n

[y i− f (x i ;c1 ,…, cm)]
2

(4)

will no longer be a quadratic function of the c j , and the best-fit c j will no longer be given as
the solutions of a linear system. Before we consider this general case, however, let's look at a
special situation in which a non-linear model can be “linearized.”

Linearization
In some cases it is possible to transform a nonlinear problem into a linear problem. For example,
the model

y=c1ec2 x (5)

is nonlinear in parameter c2 . However, taking the logarithm of both sides gives us

ln y=ln c1+c2 x (6)

If we define ŷ=ln y and ĉ1=ln c1
 then our model has the linear form

ŷ=ĉ1+c2 x (7)

EE 221 Numerical Computing Scott Hudson 2017-11-03

Lecture 20: Curve fitting II 2/5

Once we've solved for ĉ1 , c2 we can calculate c1=e ĉ1 .

Example. Noise was added to ten samples of y=πe−√2 x , 0≤x≤2 . The
following code computed the fit of the linearized model.

ylog = log(y);
a = (mean(x.*ylog)-mean(x)*mean(ylog))/(mean(x.^2)-mean(x)^2);
b = mean(ylog)-a*mean(x);
c1 = exp(b);
c2 = a;
disp([c1,c2]);

3.0157453 - 1.2939429

Nonlinear least squares
The general least-squares problem is to find the c j that minimize

MSE (c1 ,… , cm)=
1
n
∑
i=1

n

[y i− f (x i ;c1 ,…, cm)]
2

(8)

This is simply the “optimization in n dimensions” problem that we dealt with in a previous
lecture. We can use any of those techniques, such as Powell's method, to solve this problem. It is
convenient, however, to have a “front end” function that forms the MSE given the data (x i , y i)
and the function f (x ;c1 , c2 ,… , cm) and passes that to our minimization routine of choice. The
function fitLeastSquares in the Appendix is an example of such a front end.

The following example illustrates the use of fitLeastSquares.

EE 221 Numerical Computing 2017-11-03

Fig. 1: Dashed line: y=πe−√2 x . Dots: ten samples with added noise. Solid line: fit of the
model y=c1e c2 x obtained by fitting a linear model ln y= ĉ1+c2 x and then calculating

c1=e ĉ1 .

Lecture 20: Curve fitting II 3/5

Example. Eleven data samples in the interval 0≤x≤1 of the function
y=2cos (6 x+0.5) were generated. Normally distributed noise with standard

deviation 0.1 was added to the y data. A fit of the model y=c1cos (c2 x+c3)
gave c1=1.94 , c2=5.91 , c3=0.53 . The fit is shown in Fig. 2 and was
generated with the following code.

rand('seed',2);
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+rand(x,'normal')*0.1;
c0 = [1;5;0];

function yf = fMod(x,c)
 yf = c(1)*cos(c(2)*x+c(3));
endfunction

[c,fctMin] = fitLeastSquares(x,y,fMod,c0,0.01,1e-6);
disp(c);

 1.9846917
 5.8614475
 0.5453276

The lsqrsolve (Scilab) and lsqcurvefit (Matlab) functions
The Scilab function lsqrsolve solves general least-squares problems. We create a function to
calculate the residuals.

The following code solves the problem in the previous example using lsqrsolve.

EE 221 Numerical Computing 2017-11-03

Fig. 2: Fit of the model y=c1cos(c2 x+c3) to 11 data points.

Lecture 20: Curve fitting II 4/5

rand('seed',2);
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+rand(x,'normal')*0.1;

function r = residuals(c,m)
 r = zeros(m,1);
 for i=1:m
 r(i) = y(i)-c(1)*cos(c(2)*x(i)+c(3));
 end
endfunction

c0 = [1;5;0];
c = lsqrsolve(c0,residuals,length(x));
disp(c);

In Matlab the function lsqcurvefit can be used to implement a least-squares fit. The first
step is to create a file specifying the model function in terms of the parameter vector c and the x
data. In this example the file is named fMod.m

function yMod = fMod(c,x)
yMod = c(1)*cos(c(2)*x+c(3));

Then, in the main program we pass the function fMod as the first argument to lsqcurvefit,
along with the initial estimate of the parameter vector c0 and the x and y data.

x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+randn(size(x))*0.1;
c0 = [1;5;0];
c = lsqcurvefit(@fMod,c0,x,y);
disp(c);

EE 221 Numerical Computing 2017-11-03

Lecture 20: Curve fitting II 5/5

Appendix – Scilab code
0001 //
0002 // fitLeastSquares.sci
0003 // 2014-11-11, Scott Hudson, for pedagogic purposes
0004 // Given n data points x(i),y(i) and a function
0005 // fct(x,c) where c is a vector of m parameters, find c values that
0006 // minimize sum over i (y(i)-fct(x(i),c))^2 using Powell's method.
0007 // c0 is initial guess for parameters. cStep is initial step size
0008 // for parameter search.
0009 //
0010 function [c,fctMin] = fitLeastSquares(xData,yData,fct,c0,cStep,tol)
0011 nData = length(xData);
0012
0013 function w=fMSE(cTest)
0014 w = 0;
0015 for i=1:nData
0016 w = w+(yData(i)-fct(xData(i),cTest))^2;
0017 end
0018 w = w/nData;
0019 endfunction
0020
0021 [c,fctMin] = optimPowell(fMSE,c0,cStep,tol);
0022 endfunction

EE 221 Numerical Computing 2017-11-03

	Introduction
	Linearization
	Nonlinear least squares
	The lsqrsolve (Scilab) and lsqcurvefit (Matlab) functions
	Appendix – Scilab code

