Lecture 20
Curve fitting 11

Introduction
In the previous lecture we developed a method to solve the general linear least-squares problem.

Given n samples (x,,y,), the coefficients ¢ ; of amodel

=§c_,-fj(X) (1)

are found which minimize the mean-squared error

MSE=1 Z v~ (x)] (2)

i=1

The MSE is a quadratic function of the ¢; and best-fit coefficients are the solution to a system of
linear equations.

In this lecture we consider the non-linear least-squares problem. We have a model of the form
y=f(x;¢,,¢5 ....C,) (3)

where the ¢; are general parameters of the function £, not necessarily coefficients. An example
is fitting an arbitrary sine wave to data where the model is

y:f(x;cl,c2,03):clsin(02x+c3)

The mean-squared error

MSE(c,.....c :%Z[ xicy e, )

will no longer be a quadratic function of the ¢, and the best-fit ¢, will no longer be given as
the solutions of a linear system. Before we consider this general case, however, let's look at a
special situation in which a non-linear model can be “linearized.”

Linearization

In some cases it is possible to transform a nonlinear problem into a linear problem. For example,
the model

y=c, e (5)
is nonlinear in parameter ¢, . However, taking the logarithm of both sides gives us
Iny=lnc,+c,x (6)
If we define ﬁzln y and ’c‘l =Inc, then our model has the linear form

P=0C,+c,x (7)
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Fig. 1: Dashed line: y=me ‘** . Dots: ten samples with added noise. Solid line: fit of the

model y=c,e”" obtained by fitting a linear model 1ny=/c\1 +c,x and then calculating

—,0
c,=e .

A A
Once we've solved for ¢,,c, we can calculate ¢,=e"".
1 2 1

Example. Noise was added to ten samples of y=mn e , 0<x<2. The
following code computed the fit of the linearized model.

ylog = log(y);

a = (mean(x.*ylog)-mean (x)*mean (ylog))/ (mean (x.”2)-mean (x)"2);
b mean (ylog) —a*mean (x) ;

cl = exp(b);

c2 = a;

disp([cl,c2]);

3.0157453 - 1.2939429

Nonlinear least squares

The general least-squares problem is to find the ¢; that minimize

MSE(CI,...,cm)=lZ:[y[—f(xi;cl,...,cm)]2 (8)

ni=

This is simply the “optimization in »n dimensions” problem that we dealt with in a previous
lecture. We can use any of those techniques, such as Powell's method, to solve this problem. It is
convenient, however, to have a “front end” function that forms the MSE given the data (x,,,)

and the function f(x,c,,c,,...,c,) and passes that to our minimization routine of choice. The
function fitLeastSquares in the Appendix is an example of such a front end.

The following example illustrates the use of fitLeastSquares.
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Fig. 2: Fit of the model y=c,cos(c,x+c;) to 11 data points.

Example. Eleven data samples in the interval 0<x<1 of the function

y=2cos(6x+0.5) were generated. Normally distributed noise with standard
deviation 0.1 was added to the y data. A fit of the model y=c,cos(c,x+c;)

gave ¢,=194, ¢,=591, ¢;=0.53. The fit is shown in Fig. 2 and was
generated with the following code.

rand ('seed', 2);

x = [0:0.1:11";

y = 2*cos (6*x+0.5)+rand(x, 'normal')*0.1;
c0 = [1;5;0];

function yf = fMod(x,c)
vE = c (1) *cos (c(2)*x+c(3));
endfunction

[c, fctMin] = fitLeastSquares(x,y,fMod,c0,0.01,1le-6);
disp(c);

1.9846917
5.8614475
0.5453276

The Isqrsolve (Scilab) and Isqcurvefit (Matlab) functions

3/5

The Scilab function 1sgrsolve solves general least-squares problems. We create a function to

calculate the residuals.

The following code solves the problem in the previous example using 1sgrsolve.
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rand ('seed', 2);
X [0:0.1:17";

% 2*cos (6*x+0.5) +trand (x, 'normal')*0.1;
function r = residuals (c,m)

r = zeros(m,1);

for i=1:m

r(i) = y(i)-c(l)*cos(c(2)*x(i)+c(3));

end
endfunction
c0 = [1;5;0];
c = lsqgrsolve (c0O,residuals, length(x));
disp(c);

In Matlab the function 1sqcurvefit can be used to implement a least-squares fit. The first
step is to create a file specifying the model function in terms of the parameter vector c and the x
data. In this example the file is named fMod.m

function yMod = fMod (c, x)
yMod = c (1) *cos (c(2)*x+c(3));

Then, in the main program we pass the function fMod as the first argument to 1sgcurvefit,
along with the initial estimate of the parameter vector c0 and the x and y data.

X [0:0.1:17";

y 2*cos (6*x+0.5)+randn (size (x))*0.1;
c0 = [1;5;071;

c = lsqgcurvefit (@fMod,c0,x,vy);
disp(c);
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Appendix — Scilab code
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SIS S S S S S S S S S S S S S S S S S S S S SSSSSSS SS SS

// fitLeastSquares.sci

// 2014-11-11, Scott Hudson, for pedagogic purposes

// Given n data points x(i),y (i) and a function

// fct(x,c) where ¢ is a vector of m parameters, find c values that

// minimize sum over i (y(i)-fct(x(i),c))”"2 using Powell's method.

// c0 is initial guess for parameters. cStep 1is initial step size

// for parameter search.

SIS S S S S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

function [c,fctMin] = fitleastSquares (xData,yData, fct,c0,cStep, tol)
nData = length (xData) ;

function w=fMSE (cTest)
w = 0;
for i=1:nData
w = wt+ (yData (i) -fct (xData(i),cTest))"2;
end
w = w/nData;
endfunction

[c,fctMin] = optimPowell (£MSE, c0,cStep,tol);
endfunction
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