
Lecture 20
Curve fitting II

Introduction
In the previous lecture we developed a method to solve the general linear least-squares problem.

Given n samples (x i , y i) , the coefficients c j  of a model

y= f (x )=∑
j=1

m

c j f j(x ) (1)

are found which minimize the mean-squared error

MSE=1
n
∑
i=1

n

[ y i− f ( x i)]
2

(2)

The MSE is a quadratic function of the c j  and best-fit coefficients are the solution to a system of
linear equations.

In this lecture we consider the non-linear least-squares problem. We have a model of the form

y= f (x ;c1 , c2 ,…, cm) (3)

where the c j  are general parameters of the function f, not necessarily coefficients. An example
is fitting an arbitrary sine wave to data where the model is

y= f (x ;c1 , c2 , c3)=c1sin (c2 x+c3)

The mean-squared error

MSE (c1 ,… , cm)=
1
n
∑
i=1

n

[ y i− f (x i ;c1 ,…, cm)]
2

(4)

will no longer be a quadratic function of the c j , and the best-fit c j  will no longer be given as
the solutions of a linear system. Before we consider this general case, however, let's look at a
special situation in which a non-linear model can be “linearized.” 

Linearization
In some cases it is possible to transform a nonlinear problem into a linear problem. For example,
the model

y=c1ec2 x (5)

is nonlinear in parameter c2 . However, taking the logarithm of both sides gives us

ln y=ln c1+c2 x (6)

If we define ŷ=ln y  and ĉ1=ln c1
 then our model has the linear form

ŷ=ĉ1+c2 x (7)
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Once we've solved for ĉ1 , c2  we can calculate c1=e ĉ1 . 

Example.  Noise  was  added  to  ten  samples  of  y=πe−√2 x ,  0≤x≤2 .  The
following code computed the fit of the linearized model.

ylog = log(y);
a = (mean(x.*ylog)-mean(x)*mean(ylog))/(mean(x.^2)-mean(x)^2);
b = mean(ylog)-a*mean(x);
c1 = exp(b);
c2 = a;
disp([c1,c2]);

3.0157453  - 1.2939429 

Nonlinear least squares
The general least-squares problem is to find the c j  that minimize 

MSE (c1 ,… , cm)=
1
n
∑
i=1

n

[ y i− f (x i ;c1 ,…, cm)]
2

(8)

This is  simply the “optimization in  n dimensions” problem that we dealt  with in  a previous
lecture. We can use any of those techniques, such as Powell's method, to solve this problem. It is
convenient, however, to have a “front end” function that forms the MSE given the data (x i , y i)
and the function f (x ;c1 , c2 ,… , cm)  and passes that to our minimization routine of choice. The
function fitLeastSquares in the Appendix is an example of such a front end. 

The following example illustrates the use of fitLeastSquares.
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Fig. 1: Dashed line: y=πe−√2 x . Dots: ten samples with added noise. Solid line: fit of the
model  y=c1e c2 x  obtained by fitting a linear model  ln y= ĉ1+c2 x  and then calculating

c1=e ĉ1 .
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Example.  Eleven  data  samples  in  the  interval  0≤x≤1  of  the  function
y=2cos (6 x+0.5)  were generated.  Normally distributed  noise with  standard

deviation 0.1 was added to the  y data. A fit of the model  y=c1cos (c2 x+c3)
gave  c1=1.94 ,  c2=5.91 ,  c3=0.53 .  The  fit  is  shown  in  Fig.  2 and  was
generated with the following code.

rand('seed',2);
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+rand(x,'normal')*0.1;
c0 = [1;5;0];

function yf = fMod(x,c)
  yf = c(1)*cos(c(2)*x+c(3));
endfunction

[c,fctMin] = fitLeastSquares(x,y,fMod,c0,0.01,1e-6);
disp(c);

    1.9846917  
    5.8614475  
    0.5453276   

The lsqrsolve (Scilab) and lsqcurvefit (Matlab) functions
The Scilab function lsqrsolve solves general least-squares problems. We create a function to
calculate the residuals.

The following code solves the problem in the previous example using lsqrsolve.
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Fig. 2: Fit of the model y=c1cos(c2 x+c3)  to 11 data points.
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rand('seed',2);
x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+rand(x,'normal')*0.1;

function r = residuals(c,m)
  r = zeros(m,1);
  for i=1:m
    r(i) = y(i)-c(1)*cos(c(2)*x(i)+c(3));
  end
endfunction

c0 = [1;5;0];
c = lsqrsolve(c0,residuals,length(x));
disp(c);

In Matlab the function  lsqcurvefit can be used to implement a least-squares fit. The first
step is to create a file specifying the model function in terms of the parameter vector c and the x
data. In this example the file is named fMod.m 

function yMod = fMod(c,x)
yMod = c(1)*cos(c(2)*x+c(3));

Then, in the main program we pass the function fMod as the first argument to lsqcurvefit,
along with the initial estimate of the parameter vector c0 and the x and y data.

x = [0:0.1:1]';
y = 2*cos(6*x+0.5)+randn(size(x))*0.1;
c0 = [1;5;0];
c = lsqcurvefit(@fMod,c0,x,y);
disp(c);
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Appendix – Scilab code
0001  //////////////////////////////////////////////////////////////////////
0002  // fitLeastSquares.sci
0003  // 2014-11-11, Scott Hudson, for pedagogic purposes
0004  // Given n data points x(i),y(i) and a function 
0005  // fct(x,c) where c is a vector of m parameters, find c values that
0006  // minimize sum over i (y(i)-fct(x(i),c))^2 using Powell's method.
0007  // c0 is initial guess for parameters. cStep is initial step size
0008  // for parameter search. 
0009  //////////////////////////////////////////////////////////////////////
0010  function [c,fctMin] = fitLeastSquares(xData,yData,fct,c0,cStep,tol)
0011    nData = length(xData);
0012    
0013    function w=fMSE(cTest)
0014      w = 0;
0015      for i=1:nData
0016        w = w+(yData(i)-fct(xData(i),cTest))^2;
0017      end
0018      w = w/nData;
0019    endfunction
0020    
0021    [c,fctMin] = optimPowell(fMSE,c0,cStep,tol);
0022  endfunction
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