
Lecture 19
Curve fitting I

1 Introduction
Suppose we are presented with eight points of measured data (x i , y j) . As shown in Fig. 1 on the
left,  we  could  represent  the  “underlying  function”  of  which  these  data  are  samples  by
interpolating between the data points using one of the methods we have studied previously. 

However, maybe the data are samples of the response of a process that we know, in theory, is
supposed to have the form y= f (x )=a x+b  where a,b are constants. Maybe we also know that
y is a very weak signal and the sensor used to measure it is “noisy,” that is,  it  adds its own
(random) signal in with the “true”  y data. Given this it makes no sense to interpolate the data
because in part we'll be interpolating noise, and we know that the “real” signal should have the
form y=ax+b . In a situation like this we prefer to fit a line to the data rather than perform an
interpolation (Fig. 1 at right). If done correctly this can provide a degree of immunity against the
effects  of  measurement  errors  and  noise.  More  generally  we  want  to  develop  curve  fitting
techniques that allow theoretical curves, or models, with unknown parameters (such as a and b in
the line case) to be “fit” to n data points. 

2 Fitting a constant to measured data
The simplest  “curve fitting” problem is  estimating a parameter from multiple  measurements.
Suppose m is the mass of an object. We want to measure this using a scale. Unfortunately the
scales in our laboratory are not well calibrated. However we have nine scales. We expect that if
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Fig. 1: Measured data with: (left) spline interpolation, (right) line fit.
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we take measurements with all of them and average the results we should get a better estimate of
the true mass that by relying on the measurement from a single scale. Our results might look
something like shown in  Fig. 2. Let the measurement of the  ith scale be  mi  then the average
measurement is given by

m̄=
1
n
∑
i=1

n

mi (1)

where n is the number of measurements. This is what we should use for our “best estimate” of
the true mass. Averaging is a very basic form of curve fitting. 

3 Least-squares line fit
Going back to the situation illustrated in Fig. 1, how do we figure out the “best fit” line? There
doesn't seem to be a straightforward way to “average” the data like we did in Fig. 2. Instead, let's
suppose  we  have  n data  points  (x i , y i) .  We  are  interested  in  a  linear  model  of  the  form
y=a x+b , and our task is calculate the “best” values for a and b. If all our data actually fell on

a line then the best  a and  b values would result  in  y i−(a xi+b)=0  for  i=1,2,… , n .  More
generally let's define the residual (“error of the fit”) for the ith data point as

r i= y i−(ax i+b) (2)

A perfect fit would give r i=0  for all i. The residual can be positive or negative, but what we are
most concerned with is its magnitude. Let's define the mean squared error (MSE) as

MSE=
1
n
∑
i=1

n

ri
2=

1
n
∑
i=1

n

( y i−(a xi+b))2 (3)
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Fig. 2: Horizontal line is average of several measurements (dots)
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We now seek the values of a and b that minimize the MSE. These will satisfy

∂MSE
∂ a

=0  and 
∂MSE

∂b
=0 (4)

The b derivative is

∂MSE
∂b

=−
2
n
∑
i=1

n

( yi−(a x i+b))=0 (5)

Multiplying through by −1 /2  and rearranging we find

1
n
∑
i=1

n

yi−
a
n
∑
i=1

n

x i−
1
n
∑
i=1

n

b=0 (6)

Now define the average x and y values as

⟨ y⟩=
1
n
∑
i=1

n

y i  , ⟨ x ⟩=
1
n
∑
i=1

n

x i (7)

Equation (6) then reads

⟨ y⟩−a ⟨ x ⟩−b=0 (8)

or

a ⟨x ⟩+b=⟨ y⟩ (9)

This tells us that the point (⟨ x ⟩ ,⟨ y ⟩)  (the “centroid” of the data) falls on the line.

The a derivative of the MSE is

∂MSE
∂a

=−
2
n
∑
i=1

n

( yi−(a x i+b))x i=0 (10)

Multiplying through by −1 /2  and rearranging we find

1
n
∑
i=1

n

x i y i−
a
n
∑
i=1

n

x i
2
−

b
n
∑
i=1

n

x i=0 (11)

or

⟨ xy ⟩−a ⟨ x2⟩−b ⟨ x ⟩=0 (12)

with the additional definitions

⟨ xy ⟩=
1
n
∑
i=1

n

x i y i  , ⟨ x2
⟩=

1
n
∑
i=1

n

x i
2 (13)

A final rearrangement gives us

a ⟨x2⟩+b⟨ x ⟩=⟨ xy ⟩ (14)

We now have two equations in the two unknowns a,b 

       a ⟨ x ⟩+b=⟨ y ⟩

a ⟨ x2
⟩+b ⟨ x ⟩=⟨ xy ⟩

(15)
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Solving the first equation for b

b=⟨ y ⟩−a ⟨ x⟩ (16)

and substituting this into the second equation we obtain

a ⟨x2
⟩+(⟨ y⟩−a ⟨ x ⟩)⟨ x ⟩=⟨ xy⟩ (17)

Solving this for a we have

a=
⟨ xy ⟩−⟨ x ⟩⟨ y ⟩

⟨x2
⟩−⟨ x ⟩

2 (18)

Equations (18) and (16) provide the “best-fit” values of  a and  b. Because we obtained these
parameters by minimizing the sum of squared residuals, this is called a least-squares line fit. 

Example. The code below generates six points on the line  y=1− x  and adds
normally-distributed noise of standard deviation 0.1 to the  y values. Then (18)
and (16) are used to calculate the best-fit values of a and b. The data and fit line
are plotted  in  Fig.  3.  The “true” values  are  a=−1 , b=1 . The fit  values  are
a=−0.91 ,b=1.02 .

-->x = [0:0.2:1]';
 
-->y = 1-x+rand(x,'normal')*0.1;

-->a = (mean(x.*y)-mean(x)*mean(y))/(mean(x.^2)-mean(x)^2)
 a  =
  - 0.9103471  
 
-->b = mean(y)-a*mean(x)
 b  =
    1.0191425 
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Fig. 3: Least-squares line fit to noisy data.
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4 Linear least-squares
The  least-squares  idea  can  be  applied  to  a  linear  combination  of  any  m functions
f 1(x) , f 2(x) ,… , f m(x) . Our model has the form

y=∑
j=1

m

c j f j( x) (19)

For example, if m=2  and f 1(x)=1 , f 2(x)=x  then our model is 

y=c1+c2 x (20)

which is just the linear case we've already dealt with. If we add f 3(x)=x2  then the model is 

y=c1+c2 x+c3 x2 (21)

which is an arbitrary quadratic. Or we could have a model such as

y=c1cos (5 x)+c2sin (5 x)+c3cos (10 x)+c4 sin(10 x ) (22)

In any case we'll continue to define the residuals as the difference between the observed and the
modeled y values

r i= y i−∑
j=1

m

c j f j( x i) (23)

and the mean-squared error as

MSE=
1
n
∑
i=1

n

r i
2
=

1
n
∑
i=1

n

( y i−∑
j=1

m

c j f j(x i))
2

(24)

Let's expand  this as

1
n
∑
i=1

n

( yi−∑
j=1

m

c j f j(x i))
2

=
1
n
∑
i=1

n

( y i
2
−2 y i∑

j=1

m

c j f j (xi)+[∑
j=1

m

c j f j( xi)]
2

) (25)

Call 

1
n
∑
i=1

n

yi
2=⟨ y2⟩

and

−
2
n
∑
i=1

n

y i∑
j=1

m

c j f j(x i)=−∑
j=1

m

b j c j (26)

with

b j=
2
n
∑
i=1

n

yi f j( xi) (27)

The last term in (25) can be written 
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[∑
j=1

m

c j f j( xi)]
2

=∑
j=1

m

c j f j(x i)∑
k=1

m

ck f k (x i) (28)

Therefore

1
n
∑
i=1

n

[∑
j=1

m

c j f j( xi)]
2

=
1
n
∑
i=1

n

(∑
j=1

m

c j f j( xi)∑
k=1

m

ck f k (x i))=1
2
∑
j=1

m

∑
k=1

m

a jk c j ck (29)

with

a jk=akj=
2
n
∑
i=1

n

f j( x i) f k ( xi) (30)

Finally we can write 

MSE=⟨ y2
⟩−∑

i=1

m

bi ci+
1
2
∑
i=1

m

∑
j=1

m

a ij ci c j (31)

This shows that  the  MSE is  a quadratic  function of the unknown coefficients.  In the lecture
“Optimization in n dimensions” we calculated the solution to a system of this form, except that
the second term (with the b coefficients) had a plus rather than minus sign. Defining the m×1
column vectors b and c and the m×m  matrix A as

c=[c j ] ,b=[b j] ,A=[a ij ] (32)

the condition for a minimum is (with the minus sign for the b coefficients)

−b+A c=0 (33)

and

c=A−1 b (34)

Another way arrive at this result is to define the n×1  column vector

y=[ yi ] (35)

and the n×m  matrix

F=[ f ij]  with f ij= f j( xi) (36)

Then our model is

y=F c (37)

This is n equations in m<n  unknowns and in general will not have a solution. Multiplying both
sides on the left by FT  results in the system

FT Fc=FT y (38)

Since FT F  is m×m  and FT y  is m×1  this is a system of m equations in m unknowns that, in
general, will have a unique solution

c=(FT F)
−1

FT y (39)

The elements of FT F  are
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[FT F ] jk=∑
i=1

n

f ij f ik=
n
2

a jk (40)

while the elements of FT y  are

[FT y] j=∑
i=1

n

f ij y i=
n
2

b j (41)

Therefore FT Fc=FT y , when multiplied through by 2 /n , is equivalent to

A c=b (42)

The linear system (38) is called the normal equation, and we have the following algorithm

Linear least squares fit

  Given n samples (x i , y i)  

  and a model y=∑
j=1

m

c j f j( x)

  Form the n×m  matrix F with elements f ij= f j( xi)

  Form the n×1  column vector y with elements y i

  Solve the normal equation FT Fc=FT y  for c

  The modeled y values are ŷ=Fc

The n×m  matrix F is not square if n>m , so we cannot solve the linear system

y=Fc (43)

by writing

c=F−1 y (44)

because F does not have an inverse. However, as we've seen, we can compute 

c=(FT F)
−1

FT y (45)

and this c will come as close as possible (in a least-squares sense) to solving (43). This leads us
to define the pseudoinverse of F as the m×n  matrix

F+
=(FT F )

−1
FT (46)

Our least-squares solution can now be written

c=F+ y (47)

In Scilab/Matlab the pseudo inverse is computed by the command  pinv(F). However, if we
simply apply the backslash operator as we would for a square system

c = F\y

Scilab/Matlab returns the least-squares solution. We do not have to explicitly form the normal
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equation or the pseudoinverse.

Example. Noise was added to Eleven samples of y=x2
− x , x=0,0.1,0 .2,… ,1 .

A least-squares fit of the model c1+c2 x+c3 x2  gave

c1=0.044 , c1=−1.110 , c2=1.039

Code is shown below and results are plotted in Fig. 4. 

-->x = [0:0.1:1]';
-->y0 = x.^2-x;
-->y = y0+rand(y0,'normal')*0.03; //add noise
-->F = [ones(x),x,x.^2];
-->c = F\y
 c  =
 
    0.0436524  
  - 1.1104735  
    1.0390231 

-->yf = F*c

5 Goodness of fit
Once we've fit a model to data we may wonder if the fit is “good” or not. It would be helpful to
have a measure of goodness of fit. Doing this rigorously requires details from probability theory.
We will present the following results without derivation.

Assume our y values are of the form

y i=si+ηi

where si  is the signal that we are trying to model and ηi  is noise. If our model were to perfectly
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Fig.  4:  f ( x)=x2
−x  (dashed curve), samples of  f ( x)

with  noise  added  (dots)  and  least-squares  fit  of  model
c1+c2 x+c3 x2  (solid line).
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fit the signal, then the residuals

r i= y i−∑
j=1

m

c j f j (x i) (48)

would simply be noise r i=ηi . We can quantify the goodness of fit by comparing the statistics of
our residuals to  the (assumed known) statistics  of the noise.  Specially,  for large  n−m ,  and
normally distributed noise, a good fit will result in the number

σ=√ 1
n−m

∑
i=1

n

r i
2 (49)

being equal, on average, to the standard deviation of the noise, where n is the number of data and
m is the number of model coefficients. If it is significantly larger than this it indicates that the
model is not accounting for all of the signal, where a fractional change of about √2/(n−m)  is
statistically  significant.  For  example,  √2/50=0.2  means  that  a  change  of  around  20%  is
statistically  significant.  If  the  noise  standard  deviation  is  0.1 ,  a  σ  larger  than  about
0.1(1.2)=0.12  implies the signal is not being fully modeled. The following example illustrates
the use of this goodness-of-fit measure. 

Example. The following code was used to generate 50 samples of the function
f (x)=x+x2  over  the  interval  0≤x≤1  with  normally  distributed  noise  of

standard deviation 0.05  added to each sample. 

n = 50;
rand('seed',2);
x = [linspace(0,1,n)]';
y = x+x.^2+rand(x,'normal')*0.05;

These  data  were  then  fit  by  the  four  models  y=c1 ,  y=c1+c2 x ,

y=c1+c2 x+c3 x2  and y=c1+c2 x+c3 x2
+c4 x3 . The resulting σ  values were

σ0=0.6018 , σ1=0.0864 , σ2=0.0506  and σ3=0.0504 . Since √2/50=0.2  a
change of about 20% is statistically significant. The fits improved significantly
until the last model. The data therefore support the model y=c1+c2 x+c3 x2  but
not the cubic model. The fits are shown in Fig. 5.
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Fig.  5 Data set fit by polynomials. Top-left:  y=c1 ,  σ0=0.6018 . Top-right:  y=c 1+c2 x ,  σ1=0.0864 .

Bottom-left: y=c1+c2 x+c3 x2 , σ2=0.0506 . Bottom-right: y=c1+c2 x+c3 x2
+c4 x 3 , σ3=0.0504 .
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