
Lecture 18
Optimization in n dimensions

1 Introduction
We now consider the problem of minimizing a single scalar function of  n variables,  f (x) ,
where  x=[ x1 , x2 ,… , xn]

T .  The 2D case can be visualized as “finding the lowest point” of a
surface z= f ( x , y)  (Fig. 1).

A necessary condition for a minimum is that ∂ f /∂ x i=0  for all 1≤i≤n . The partial derivative
∂ f /∂ xi  is the ith component of the gradient of f, denoted ∇ f , so at a minimum we must have

∇ f =0 (1)

In the 2D case this implies we've “bottomed out” at the lowest point of a “valley.” The gradient
also vanishes at a maximum, so this is a necessary but not sufficient condition for a minimum. 

2 Quadratic functions
Quadratic functions of several variables come up in many applications. A quadratic function of n
variables x i  has the form

f (x1 , x2 ,… , xn)=c+∑
i=1

n

bi x i+
1
2
∑
i=1

n

∑
j=1

n

aij x i x j (2)

Since

1
2

aij x i x j+
1
2

a ji x j xi=
1
2
(a ij+a ji) xi x j (3)

the coefficients a ij , a ji  only appear as the sum a ij+a ji . Without loss of generality, therefore, we
can take a ij=a ji . 

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig.  1 The 2D minimization problem is equivalent to finding the “lowest point” on a
surface.



Lecture 18: Optimization in n dimensions 2/9

By differentiation we have

f (0)=c  , 
∂ f
∂ x i

=bi  , 
∂ f 2

∂ x i ∂ x j

=aij (4)

which allows us to interpret the form (2) as a multivariable Taylor series of an arbitrary function.
The conditions for a minimum (or maximum) are (for k=1,2,… , n )

∂ f
∂ xk

=bk+
1
2
∑
i=1

n

aik x i+
1
2
∑
j=1

n

akj x j=bk+∑
j=1

n

akj x j=0 (5)

In matrix notation this reads

∇ f =b+A x=0 (6)

where bi  are the components of b, and a ij  are the components of the symmetric matrix A. The
solution is

x=−A−1 b (7)

The  minimization  of  a  quadratic  function  is  equivalent  to  the  solution  of  a  linear  system.
However,  for  an  arbitrary  function  f (x)  we  can't  make  any  general  statements  about  a
minimum. This motivates us to seek a method to systematically search for the minimum of a
function of n variables.

3 Line minimization
We know how to go about minimizing a function of one variable. If we start at a point x0  and
move only in the direction of a vector u (Fig. 2) then the f (x)  values we can sample form a
function of a single variable

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig.  2 x0  is  the  starting  point  and  u  the
direction in which we search for a minimum.



Lecture 18: Optimization in n dimensions 3/9

g (t )= f (x0+t u) (8)

Here the  variable  t is  the distance we move in  the direction  u.  We can use any of  our  1D
minimization  methods on this  function.  Of course this  is  not  likely to find the minimum of
f (x) . However, suppose we start at x0  and move along the direction u1  to a minimum. Call

this  new point  x1=x0+t 1 u1 .  Then move along another  direction  u2  to  find a minimum at
x2=x1+t 2 u2  and so on. This process should eventually find a local minimum (if one exists).
The process of minimizing the function  f (x)  along a single line defined by some vector  u is
called line minimization. The algorithm is quite simple

Successive line minimization algorithm

start with initial guess x0  and search directions ui

iterate until converged

for i=1,2,… , n

find t  that minimizes g (t )= f (x0+t ui)

set x0 ←x0+t ui

An obvious set of directions is the coordinate axes

u1=(
1
0
0
⋮
0
) ,u2=(

0
1
0
⋮
0
),⋯,un=(

0
0
0
⋮
1
) (9)

In this case the algorithm simply minimizes f (x)  with respect to x1 , then with respect to x2

and so on. The algorithm will find a minimum (if one exists), but in many cases it can be very
slow to do so.  An example is shown in Fig. 3 where we minimize the quadratic function 

f (x , y )=( x− y
4 )

2

+( x+ y−2)
2

(10)

starting  at  x= y=0 .  The minimum is  at  x= y=1 .  From the  contour  plot  we see  that  the
“valley” of this function is narrow and oriented 45o  to the coordinate axes. Since we are limited
to moving in only the  x or  y direction at  any one time,  the algorithm ends up taking many,
progressively smaller, zig-zag steps down the valley. The net movement is in a diagonal direction
along the “valley floor.” If that direction was one of our ui  directions then we might be able to
take one big step directly to the minimum. This motivates the development of “direction set”
methods  which  attempt  to  adapt  the  ui  directions  to  the  geometry  of  the  function  being
minimized.

Consider the quadratic function (2). This can be written as

f =c+xT b+
1
2

xT A x (11)

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 18: Optimization in n dimensions 4/9

 The gradient is

∇ f =b+A x (12)

Suppose we have found the minimum of g1(t)= f (x0+t u1)  at x1 . That this point the gradient
of  f  must be orthogonal to  u1 , otherwise we could move along the  u1  to lower values of  f.
Therefore

u1
T b+u1

T A x1=0 (13)

Now we find the minimum of  g2( t)= f (x1+t u2)  at  x2=x1+tm u2 . At this new  x value we
want both u1  and u2  to be orthogonal to the gradient. This ensures that the new point remains a
minimum along the u1  direction as well as the u2  direction. This requires

u1
T b+u1

T A(x1+tm u2)=0 (14)

Because of (13) this reduces to 

u1
T A u2=0 (15)

Two  vectors  u1 ,u2  satisfying  this  condition  are  said  to  be  conjugate.  A  set  of  n vectors
u1 ,u2 ,… ,un  in  which  all  pairs  are  conjugate  is  a  conjugate  set.  One of  the  first  methods
presented (1964) to generate a set of conjugate directions was Powell's method to which we now
turn.

4 Powell's method
Powell showed that a simple addition to the successive line minimization algorithm enables it to
find  conjugate  directions  and  minimize  an  arbitrary  quadratic  function  of  n variables  in  n

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 3: Successive line minimization along the coordinate axes. Left: contours of quadratic function. 
Right: Progressive results of  line minimization.



Lecture 18: Optimization in n dimensions 5/9

iterations. After completing the line minimizations of the for loop, we form a new direction  v
which is the net direction x0  moved due to the n line minimizations. We then perform a single
line minimization along the direction v. Finally, we discard the first search direction,  u1 , “left
shift” the other n−1  directions ( ui ←ui+1 ) and make v the new un  direction. It turns out any
quadratic function will be minimized by n iterations of this procedure.  The algorithm is

Powell's method

start with initial guess x0  and search directions ui

iterate until converged

save current estimate x0
old

←x0

for i=1,2,… , n

find t  that minimizes f (x0+t ui)

set x0 ←x0+t ui

v ←[x0−x0
old

] /‖ x0−x0
old‖

find t  to minimize f (x0+t v )

set x0 ←x0+t v

for i=1,2,… , n−1

ui ←ui+1

un ←v

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 4: Powell's method. Left: contours of quadratic function; Right: progressive results of each line
minimization. The minimum is found in n=2  iterations (6 line minimizations total).



Lecture 18: Optimization in n dimensions 6/9

A Scilab version of Powell's method is given in the Appendix. Applying this to function (10),
starting  at  x= y=0 ,  we obtain  the  results  shown in  Fig.  4.  In two iterations  of  three  line
minimizations each (Powell's method adds one line minimization after the for loop) we arrive at
the minimum. Powell's method has “figured out” the necessary diagonal direction. 

A more challenging test is given by the Rosenbrock function

f (x , y )=(1−x)2
+100( y− x2

)
2 (16)

shown in Fig. 5. Because of its shape it is sometimes called the “banana function.” The minimum

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 5: The "banana function.” This is actually the negative function so that the “valley” appears as a 
“hill.” Values less than -100 have been “chopped off” to show greater detail. 

Fig. 6 Powell's method following the “valley” of the “banana” function.



Lecture 18: Optimization in n dimensions 7/9

is f (1,1)=0 . Unlike the function of Fig. 4, the “valley” of this function twists and the algorithm
must following this changing direction. Starting at  x= y=0  Powell's method gives the results
shown in  Fig. 6. We can see how the algorithm tracks the twisting valley and arrives at the
minimum after only a few iterations. 

5 Newton's method
Earlier we saw that the gradient of the quadratic function

f (x1 , x2 ,… , xn)=c+∑
i=1

n

b i xi+
1
2
∑
i=1

n

∑
j=1

n

a ij x i x j (17)

vanishes at

x=−A−1 b (18)

Newton's method approximates an arbitrary function by a quadratic Taylor series with

bi=
∂ f
∂ x i

 , a ij=a ji=
∂ f 2

∂ xi ∂ x j

(19)

The vector b is the gradient of f. The matrix of second derivatives A is called the Hessian of f.
We solve for the minimum of this quadratic Taylor series and take that to be our new  x. We
continue until the method has converged.

Newton's method

iterate until converged

  at x  evaluate the gradient b  and the Hessian A

  set x ←x−A−1 b

Let's apply Newton's method to the banana function

f (x , y )=(1−x)2
+100( y− x2

)
2 (20)

The gradient is

b=(
∂ f
∂ x
∂ f
∂ y

)=(−2(1−x)−400 x ( y−x2
)

200( y−x2
) ) (21)

The Hessian is

A=(
∂

2 f

∂ x
2

∂
2 f

∂ x∂ y

∂
2 f

∂ y∂ x
∂

2 f

∂ y2 )=(2+1200 x2
−400 y −400 x

−400 x 200 ) (22)

Starting at x= y=0 , we have

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 18: Optimization in n dimensions 8/9

b=(−2
0 )  , A=(2 0

0 200)  , A−1
=

1
400(200 0

0 2)  , A−1b=(−1
0 ) (23)

and the new estimate is

( x
y)=(0

0)−(−1
0 )=(1

0) (24)

At x=1 , y=0  we have

b=( 400
−200)  , A=(1202 −400

−400 200 )  , A−1
=

1
80400 (200 400

400 1202)  , A−1b=( 0
−1) (25)

and the new estimate is

( x
y)=(1

0)−( 0
−1)=(1

1) (26)

which is the solution. 

Newton's method is conceptually simple and quite powerful. However, it requires us to compute
the gradient and the Hessian of the function. This may be difficult or impossible in many cases.
To overcome this challenge, quasi-Newton methods have been developed which attempt to form
an  approximation  of  the  Hessian  matrix,  and  possibly  the  gradient  also,  as  the  algorithm
progresses.  One  such  method  is  the  Broyden–Fletcher–Goldfarb–Shanno  (BFGS)  algorithm,
presented in 1970. 

Another  challenge  is  that  for  a  complicated  function,  Newton's  method  needs  to  be  started
sufficiently close to a minimum to be stable. As in the 1D case this motivates the development of
hybrid algorithms that attempt to use a quasi-Newton method when it works, but revert to a slow-
but-sure backup when it does not. The Scilab optim function is of this type. The calling syntax
is the same as for the 1D case

[fopt,xopt] = optim(list(NDcost,f),x0);

Here f(x) is the function to be minimized, x0 is an initial guess at the minimum, xopt is the
computed minimum and  fopt is the minimum function value. By default optim assumes the
function  f provides both function and gradient values. If  f  returns only a function value, the
list(NDcost,f) statement  takes  care  of  providing  numerical  derivatives.  Here's  this
function applied to the banana function.

x0 = [0;0];
function z = f(x)
  z = (1-x(1))^2+100*(x(2)-x(1)^2)^2;
endfunction

[fopt,xopt] = optim(list(NDcost,f),x0);
disp(xopt);

This produces the output

    1.0000000  
    1.0000000 

which is the minimum. 

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 18: Optimization in n dimensions 9/9

6 Appendix – Scilab code

6.1 Powell's method
0001  //////////////////////////////////////////////////////////////////////
0002  // optimPowell.sci
0003  // 2014-10-31, Scott Hudson, for pedagogic purposes.
0004  // Implements Powell's method for minimizing a function of
0005  // n variables.
0006  //////////////////////////////////////////////////////////////////////
0007  function [xmin, fmin]=optimPowell(fun, x0, h, tol)
0008    n = length(x0); //# of variables
0009    searchDir = eye(n,1); //direction for current search
0010    searchDirs = eye(n,n); //set of n search directions
0011  
0012    function s=gfun(t)        //local scalar function to pass to 1D
0013      s = fun(x0+t*searchDir) //optimization routines
0014    endfunction
0015  
0016    done = 0;
0017    while(~done)
0018      x0old = x0; //best solution so far
0019      for i=1:n //minimize along each of n directions
0020        searchDir = searchDirs(:,i);
0021        [a,b,c,fa,fb,fc] = optimBracket(-h,h,gfun);
0022        [tmin,gmin] = optimGolden(a,b,c,fa,fb,fc,gfun,tol/10);
0023        x0 = x0+tmin*searchDir; //minimum along this direction
0024      end
0025      for i=1:n-1 //update search directions
0026        searchDirs(:,i) = searchDirs(:,i+1);
0027      end
0028      v = x0-x0old; //new search direction
0029      searchDirs(:,n) = v/sqrt(v'*v); //add new search dir unit vector
0030      searchDir = searchDirs(:,n); //minimize along new direction
0031      [a,b,c,fa,fb,fc] = optimBracket(-h,h,gfun);
0032      [tmin,gmin] = optimGolden(a,b,c,fa,fb,fc,gfun,tol/10);
0033      x0 = x0+tmin*searchDir;
0034      xChange = sqrt(sum((x0-x0old).^2));
0035      if (xChange<tol)
0036        done = 1;
0037      end
0038    end //while
0039    xmin = x0;
0040    fmin = fun(xmin);
0041  endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18


	1 Introduction
	2 Quadratic functions
	3 Line minimization
	4 Powell's method
	5 Newton's method
	6 Appendix – Scilab code
	6.1 Powell's method


