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Lecture 17

Optimization in one dimension

1 Introduction
Optimization is  the  process  of  finding  “the  best”  of  a  set  of  possible  alternatives.  If  the
alternatives are described by a single continuous variable x, and the “goodness” of an alternative
is given by the value of a function  y= f (x ) , then optimization is the process of finding the
value  x=x0  where  f (x )  takes  on  its  maximum  value.  In  many applications  f (x )  will
measure the “badness” of an alternative (error, cost,  etc.) and then our goal is  to find where
f (x )  takes on its minimum value. Since finding the minimum of g ( x)  is equivalent to finding

the  maximum  of  −g (x)  a  simple  sign  change  converts  a  minimization  problem  into  a
maximization problem and conversely. Therefore, we can focus on minimization alone with no
loss of generality. 

From calculus we know that at the extreme values of a continuous, differentiable function f (x)

the  derivative  f
′
(x )  is  zero.  This  suggests  that  we  might  simply  apply  our  root  finding

techniques to f
′
(x ) . However, as shown in Fig. 1, f

′
(x )=0  is not a sufficient condition for a

minimum. If f
″
(x)<0  the point is a maximum and if f

″
(x)=0  it may be an inflection point.

To uniquely identify a minimum we must have two conditions satisfied:  f
′
(x )=0 , f

″
( x)>0 .

Therefore a useful algorithm must do more than just find a root of f
′
( x) . Nevertheless, as we
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Fig. 1 The condition f
′
(x)=0  can correspond to (left point) a maximum, (middle point)

an inflection point  or (right point) a minimum. The sign of  f
″
( x)  distinguishes these

cases.
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will see, there are many commonalities between optimization and root-finding algorithms.

One difficultly with optimization is illustrated in Fig. 2.  The condition f
′
(x )=0 , f

″
( x)>0  tells

us  only  that  x is  a  local  minimum of  f (x ) ,  not  if  it  is  the  global  minimum of  f (x ) .
Unfortunately there are no good, general techniques for finding a global minimum. In calculus
the algorithm given for finding a global minimum is typically to first find  all local minimum
values and then identify the least of those as the global minimum. For the same reason that it is
not numerically feasible to find all zeros of an arbitrary function, it is not feasible to find every
local minimum of an arbitrary function. Therefore we will focus on trying to find a single local
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Fig. 2 Both points satisfy f
′
(x)=0 , f

″
(x)>0  but only x=0  is a global minimum.

Fig. 3 Graphical method for finding a minimum.
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minimum. 

2 Graphical solution
Similar  to  root  finding,  simply plotting  y= f (x )  and  visually  identifying  the  minimum is
typically the easiest and most intuitive approach to optimization. This is illustrated in  Fig. 3.
However  we often  need  an  automated  way to  to  optimize  a  function.  We  now turn  to  the
optimization version of the bisection method for root find, the so-called golden search method. 

3 Golden search
The slow-but-sure bisection method for root  finding relies on the idea of  bracketing a zero.
Recall that for a continuous function, if the signs of f (a ) , f (b)  are different then there must be
a zero in the interval [a ,b] . To bracket a minimum we need three points a<b<c  (or a>b>c )
such that  f (b)< f (a)  and  f (b)< f (c ) , as illustrated in  Fig. 4. If  f (x )  is continuous over
[a , c]  it cannot “go down and come back up” without passing through a minimum value of
f (x ) . There may be more than one local minimum, but there has to be at least one. 

The golden search method is a way to shrink the interval [a ,c]  while maintaining three points
a<b<c  that bracket a minimum. When |c−a|  is less than some tolerance we can report our
minimum as

x=b±max(|b−a| ,|b−c|)
The algorithm for shrinking the interval is illustrated in Fig. 5. We might expect that b should be
the midpoint of the interval [a , c] . But if it was we would have to arbitrarily choose in which of
the two equal-length subintervals [a ,b] ,[b ,c ]  to sample f (x ) . The most efficient strategy is
to have |b−a|<|c−b|  and then sample f (x )  in the larger interval [b , c ]  at

x=b+R(c−b)

where  R is some constant. We will find either  f (x )< f (b)  or  f (x )≥ f (b) .  Depending on
which of these occur we relabel the a,b,c values as follows (Fig. 5)

if f ( x)< f (b)  set a ←b ,b ← x

if f ( x)≥ f (b)  set a ← x , c ←a
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Fig. 4 Bracketing a minimum. If these are samples of a continuous function there must be a
minimum in [a , b ] .
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This gives us a new and smaller bracket. In the second case we “change direction” with a on the
right and c on the left. This process is most efficient if the ratio of the resulting large and small
intervals is always the same, that is

|c−b|
|b−a|

=
|c− x|
|x−b|

=
|b−a|
| x−b|

The value of R that gives this property is

R=
3−√5

2
=0.382 ...

and is related to the “golden ratio” of antiquity, hence the name “golden search.” We then have

|b−a|=R |c−a|  , |x−b|=R |c−b|  , |x−b|=R |x−a|
This  algorithm converges  linearly with  the  error  decreasing  by a  factor  of  (1−R)  at  each
iteration.  Function  optimGolden in  the  Appendix  gives  a  Scilab  implementation  of  this
method. 

To start the golden search method we need an initial set of three bracket values a,b,c. A simple
way to obtain these is to choose a near where you guess a minimum might be. Then set b=a+h
where  h is  some step size appropriate to your problem. If  f (b)< f (a)  then we are “going
downhill” which is what we want. If not, then swap a and b so that we are. Now take

c=b+(b−a )(1−R)/ R≈b+1.618(b−a)

If f (c)> f (b)  then a,b,c bracket a minimum. If not then set a ←b , b ←c  and continue until a
bracket is found, or we give up and conclude that there is no minimum to be found. This is
illustrated in Fig. 6. Function optimBracket in the Appendix gives a Scilab implementation
of this method.

4 Parabolic interpolation
In the secant method for root finding, given two points  (x1 , y1)  and  (x2 , y2)  we draw a line
through them to approximate the function  y= f (x )  and find the root of that line as our next
approximation to the root of f (x ) . Given three points (x i , y i) , i=1,2,3  we can draw a unique
parabola through them as an approximation of  f (x ) . We can then take the minimum of that
parabola as our next approximation of the minimum of f (x ) . This is the idea behind parabolic
interpolation. 
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Fig. 5 left: f ( x)< f (b ) , a ←b , b← x ; right: f (b)< f (x) , a ← x , c← a
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We start with the Lagrange interpolating polynomial for our three points

y= y1

(x− x2)( x−x3)

( x1− x2)( x1− x3)
+ y2

(x−x1)( x−x3)

( x2−x1)( x2−x3)
+ y3

(x−x1)( x−x2)

(x3−x1)( x3−x2)

Now we set dy /dx=0 . Using the fact that

d
dx

( x−x i)( x−x j)=( x−x i)+(x− x j)=2 x−( xi+x j)

We get

dy
dx

= y1

2 x−(x2+ x3)

(x1−x2)(x1−x3)
+ y2

2 x−( x1+x3)

(x2−x1)(x2−x3)
+ y3

2 x−(x1+x2)

( x3−x1)( x3−x2)
=0
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Fig. 6 Finding an initial bracket

Fig.  7 Parabolic interpolation. Circles are samples.  Square is minimum of interpolated
parabola.
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Multiplying through by (x1−x2)(x1−x3)(x2−x3)  to clear fractions we find

y1[2 x−( x2+x3)](x2−x3)− y2[2 x−(x1+x3)](x1−x3)+ y3[2 x−( x1+x2)](x1−x2)=0

(The minus sign for y2  comes from (x1−x2)/( x2−x1)=−1 .) Now we solve for x to find (using

(a+b)(a−b)=a2
−b2 )

x=
1
2

y1(x2
2
− x3

2
)− y2( x1

2
−x3

2
)+ y3(x1

2
− x2

2
)

y1( x2−x3)− y2(x1−x3)+ y3( x1−x2)

Rearranging terms we obtain

x=
1
2

x1
2
( y3− y2)+ x2

2
( y1− y3)+x3

2
( y2− y1)

x1( y3− y2)+ x2( y1− y3)+x3( y2− y1)

as the x coordinate of the minimum of the parabola. 

It can be convenient to subtract x2  from all  x values, corresponding to a shift of the x axis, to
obtain

x−x2=
1
2

(x1−x2)
2
( y3− y2)+( x3−x2)

2
( y2− y1)

(x1− x2)( y3− y2)+( x3−x2)( y2− y1)

The term on the right is the displacement of the new estimate from the previous estimate  x2 .
This  should  shrink  to  zero  as  the  method  converges.  Parabolic  interpolation  converges
superlinearly,  ϵk+1≈αϵk

q , with  q≈1.32 . A Scilab implementation is given in the Appendix as
optimParabolic.
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Fig. 8 Test function for minimization



Lecture 17: Optimization in one dimension 7/13

Example. The function f (x)=(1− x)e−x2

 is plotted in Fig. 8. It has a minimum
at 

x0=
√3+1

2
=1.3660254 ...

Running optimBracket with x1=1.2 , x2=1.4  identified the bracket 

a=1.2 , b=1.4 , c=1.6763932

after  one  function  evaluation.  Running  optimGolden with  those  starting
values  and  tol=0.0001 ,  17  iterations  (each  involving  a  single  function
evaluation) were required to obtain

xmin=1.3660326 , f ( xmin)=−0.0566378

Running  optimParabolic with the same conditions, only 7 iterations were
required to obtain

xmin=1.3660254 , f ( xmin)=−0.0566378

The progress of each algorithm towards the minimum is shown in Fig. 9.

On  the  other  hand,  it  is  easy  to  find  an  a ,b , c  bracket  that  causes
optimParabolic to diverge. One example is  a=1,b=2,c=3 . From Fig. 8

we can see that for x≥2 , f
″
(x)<0 , so we might expect problems when using

a method which models the function as an upwardly curved parabola. 
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Fig.  9:  Progression  of  golden  search  (circles)  and  parabolic  interpolation  (squares)
toward minimization of  f ( x)=(1−x)e−x2

.  Horizontal axis increments at each function
call. Vertical axis is |x−r|  on log scale. First three calls are for bracketing routine. 
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5 Newton's method
For root finding we saw that Newton's method gave quadratic convergence at the price of having

to explicitly calculate the derivative f
′
( x) . We can apply Newton's method to solve f

′
( x)=0 .

We find the root of the first-order Taylor series

f
′
(x k+h)≈ f

′
( xk )+ f

″
(xk )h=0

to be

h=−
f
′
( xk )

f
″
(xk )

This gives us the iteration formula

xk +1=xk−
f
′
(xk )

f
″
(x k)

To apply this we need to explicitly calculate both first and second derivatives. Essentially what
we are doing is to approximate the function by the second-order Taylor series

f (xk+h)= f ( xk+1)≈ f (xk )+ f
′
(xk )h+

1
2

f
″
(xk )h2

and  setting  h to  correspond  to  the  minimum  of  this  parabola.  Of  course  this  requires  that

f
″
(xk )>0  otherwise the parabola will have a maximum, not a minimum. This should be the

case,  provided  we  start  “close  enough”  to  the  actual  minimum of  f (x ) .  We  could  avoid

explicitly calculating the derivatives by approximating f
″
(x)  (and possibly f

′
( x)  also) using

function values alone, analogous to what we did in the tangent method. The result would be a
quasi-Newton method. These often form a primary component of a state-of-the-art optimization
routine.

6 Hybrid methods
As with root finding, optimization presents us a tradeoff. Sure-fire methods (golden search) are
relatively slow while faster methods can be unstable and fail to find a solution. For particular
functions one or the other may be preferable. For a general-purpose optimization routine, a good
strategy is to combine slow-but-sure and fast-but-unstable methods into a hybrid method. Brent's
method [1] is a good example. This algorithm first attempts to use parabolic interpolation, but
includes tests to indicate if this is converging in a desirable manner. If it isn't, the algorithm falls
back on the golden search for one or more iterations before trying parabolic interpolation again.
Other  hybrid  algorithms  employ  quasi-Newton  methods  in  an  attempt  to  achieve  rapid
convergence when possible and slow-but-guaranteed convergence otherwise. These include the
built-in optimization routines in Scilab and Matlab
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7 The optim (Scilab) and fminunc (Matlab) functions
Scilab provides a built-in optimization routine optim. It will attempt to minimize a function of
any number  of  variables.  By default  it  expects  the  function  being optimized  to  return  both
function and derivative values. However, numerical derivatives can be used instead. In this case
the basic calling syntax is

[fopt,xopt] = optim(list(NDcost,f),x0);

Here f(x) is the function to be minimized, x0 is an initial guess at the minimum, xopt is the
computed  minimum  and  fopt is  the  minimum  function  value.  The  list(NDcost,f)
statement takes care of providing numerical derivatives. 

Matlab provides the function  fminunc for optimization. Its basic syntax is

[xopt,fopt] = fminunc(f,x0);

As always,  there are  many options  that  can be set,  and the help browser  provides complete
documentation. 

8 Constrained optimization
What we have covered so far is more precisely referred to as “unconstrained optimization.” We
are free to test  any values of  x in  our search for a minimum. In a  constrained optimization
problem only  x values  that  satisfy one  or  more  given constraints  are  valid  candidates  for  a
minimum. A simple example would be

min ( x+1)2  s.t. x≥0

Here we want to find the minimum of f (x )=( x+1)2  but subject to the constraint that x is non-
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Fig. 10 Minimization without constraint (solid dot) and with constraint x≥0  (open dot).
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negative.  This is  illustrated in  Fig.  10.  With no constraint  our solution would simply be the
bottom of  the  parabola.  But  with  the constraint  the best  we can do is  x=0 .  Implementing
constrained optimization can be tricky, depending on the complexity of the constraints. A simple
work  around  that  allows  us  to  implement  contained  optimization  using  unconstrained
optimization algorithms employs the idea of a penalty function. Instead of minimizing f (x ) , we
minimize f (x)+p (x)  where the penalty function p (x )  is large for values of x that violate the
constraints and zero otherwise. For example, adding

p (x )={ 0 , x≥0
−4 x , x<0

to f (x )=( x+1)2  results in the function shown in Fig. 11. Now an unconstrained minimization
of f (x )+p (x )  produces the same solution as the original constrained minimization problem. 

9 References
1. Brent, Richard P.  Algorithms for Minimization Without Derivatives. Dover Publications.

Kindle edition. ASIN: B00CRW5ZTK. 2013 (Originally published 1973)
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Fig. 11 Constrained optimization using a penalty function.
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10 Appendix – Scilab code

10.1 Golden search
0001  //////////////////////////////////////////////////////////////////////
0002  // optimGolden.sci
0003  // 2014-10-31, Scott Hudson, for pedagogic purposes.
0004  // Implements golden search for minimization of y=f(x).
0005  // (a,b,c) must bracket a minimum, i.e., f(b)<f(a) & f(b)<f(c)
0006  // with a<b<c or a>b>c. Function terminates when minimum has been
0007  // estimated to within +-tol
0008  //////////////////////////////////////////////////////////////////////
0009  function [xmin, fmin]=optimGolden(a, b, c, fa, fb, fc, f, tol)
0010    R = (3-sqrt(5))/2; //golden ratio
0011    while (abs(c-b)>tol) //abs(c-b)>abs(b-a) is upper bound on error
0012      x = b+R*(c-b);
0013      fx = f(x);
0014      if (fx<fb)
0015        a = b;
0016        fa = fb;
0017        b = x;
0018        fb = fx;
0019      else
0020        c = a;
0021        fc = fa;
0022        a = x;
0023        fa = fx;
0024      end
0025    end
0026    xmin = b;
0027    fmin = fb;
0028  endfunction
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10.2 Bracketing a minimum
0001  //////////////////////////////////////////////////////////////////////
0002  // optimBracket.sci
0003  // 2014-10-31, Scott Hudson, for pedagogic purposes.
0004  // Given intial values x1,x2 and a function y=f(x), attempts to
0005  // follow the function downhill until a minimum has been bracketed
0006  // f(b)<f(a) & f(b)<f(c) with a<b<c or a>b>c.
0007  //////////////////////////////////////////////////////////////////////
0008  function [a, b, c, fa, fb, fc]=optimBracket(x1, x2, f)
0009    MAX_ITERS = 20; //give up after this many attempts
0010    a = x1;
0011    b = x2;
0012    fa = f(a);
0013    fb = f(b);
0014    if (fa<fb) //going uphill, go other way by switching a & b
0015      c = a;   //save a
0016      fc = fa;
0017      a = b;   //a<-b
0018      fa = fb;
0019      b = c;   //b<=a
0020      fb = fc;
0021    end
0022    R = (3-sqrt(5))/2; //golden ratio
0023    step = (1-R)/R;
0024    done = 0;
0025    iter = 0;
0026    while (~done)
0027      c = b+(b-a)*step;
0028      fc = f(c);
0029      if (fc>fb)   //we're now going uphill, bracket found
0030        done = 1;
0031      else         //still going down hill
0032        a = b;
0033        fa = fb;
0034        b = c;
0035        fb = fc;
0036        iter = iter+1;
0037      end
0038      if (iter>MAX_ITERS)
0039        error('optimBracket: MAX_ITERS reached');
0040      end
0041    end
0042  endfunction
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10.3 Parabolic interpolation
0001  //////////////////////////////////////////////////////////////////////
0002  // optimParabolic.sci
0003  // 2014-10-31, Scott Hudson, for pedagogic purposes.
0004  // Uses parabolic interpolation to estimate the minimum of y=f(x).
0005  // Last three estimates are retained for interpolation. 
0006  //////////////////////////////////////////////////////////////////////
0007  function [xmin, fmin]=optimParabolic(a, b, c, fa, fb, fc, f, tol)
0008    MAX_ITERS = 20;
0009    x = [a,b,c];
0010    y = [fa,fb,fc];
0011    iter = 1;
0012    while ((max(x)-min(x))>2*tol)
0013      N = (y(3)-y(2))*x(1)^2+(y(1)-y(3))*x(2)^2+(y(2)-y(1))*x(3)^2;
0014      D = (y(3)-y(2))*x(1)  +(y(1)-y(3))*x(2)  +(y(2)-y(1))*x(3)  ;
0015      x(1) = x(2);
0016      y(1) = y(2);
0017      x(2) = x(3);
0018      y(2) = y(3);
0019      x(3) = N/(2*D);
0020      y(3) = f(x(3));
0021      iter = iter+1;
0022      if (iter>MAX_ITERS)
0023        error('optimParabolic: MAX_ITERS reached');
0024      end
0025    end
0026    xmin = x(3);
0027    fmin = y(3);
0028  endfunction
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