
Lecture 15
Interpolation II

1 Introduction
In the previous lecture we focused primarily on polynomial interpolation of a set of n points. A
difficulty we observed is that when n is large, our polynomial has to be of high order, namely
n−1 . Unfortunately, high-order polynomials tend to suffer from “wiggle,” and this limits their
practical usefulness for interpolation. In this lecture we will explore how we can use polynomials
of moderate order to achieve smooth interpolations while avoiding the problems associate with
high-order polynomials.

2 Piecewise polynomial interpolation – Hermite splines
What  we've  previously  called  linear  interpolation  is  more  precisely  piecewise-linear
interpolation. We don't interpolate the entire set of points with a single line. Instead, we use
different line segments over different intervals between sample points (Fig. 1). The complete
interpolation is built by “tying together” these lines. In fact the sample points where lines join or
“tie” together, (x i , y i) , i=2,3,… , xn−1 , are appropriately called “knots.”  

The entire interpolation function is described by 

y= f (x )=a i x+bi  if xi≤x< xi+1

and the a i ,b i  values are determined by the conditions

   y i=a i xi+bi

y i+1=ai x i+1+bi

We can express a linear function in different forms, one of which might be more convenient for
determining coefficients. We could write the ith segment in the form of a 1st order Taylor series
expanded about the point x i ,
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Fig. 1: Piecewise interpolation: linear (left) and cubic (right). The sample points at which 
pieces join (or “tie together”) are called “knots.”
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y= y i+ y i
′
(x−x i)

This trivially satisfies y= y i  when x= xi . For x= xi+1  the requirement

y i+1= y i+ yi
′
( x i+1−x i)

provides the value the y i
′  value

y i
′
=

y i+1− y i

x i+1−x i

Alternately, the Lagrange interpolating polynomial can be written by inspection as

y= y i

x−x i+1

x i− x i+1

+ yi +1

x−x i

x i+1−x i

We now extend this idea of piecewise interpolation to polynomials. While a piecewise linear
interpolation is continuous, the derivative is clearly not continuous at the sample points. Suppose

now that for each x i  we know both the function value y i  and the function slope y i
′
. Let's build

a piecewise polynomial interpolation that has the specified function and slope values at the knots.
These polynomial pieces are known as  splines. This term comes from the practice of bending
strips of wood or plastic to form smooth curves, a technique often used in ship building and pre-
computer-era drafting.

For each segment we have four equations to satisfy, the two endpoint function values and the two
endpoint slope values. Our interpolation function must therefore have four unknown coefficients.
Since a 3rd order polynomial has four coefficients we write  (Fig. 1) 

f (x)=a i x3
+bi x2

+ci x+d i  if x i≤ x<x i+1

In each interval we have four unknowns a i ,b i , c i , d i  satisfying four equations

   y i=a i xi
3
+bi x i

2
+ci x i+d i

   y i
′
=3ai xi

2
+2 bi x i+c i

y i+1=ai x i+1
3

+bi x i+1
2

+c i x i+1+d i+1

y i+1

′
=3a i x i+1

2
+2 bi xi+1+c i

(1)

We  could  solve  these  four  equations  in  four  unknowns  directly.  Instead  we'll  apply  some
bookkeeping to obtain a bit “cleaner” approach.

To  simplify  analysis  over  an  arbitrary  interval  x i≤ x<x i+1  it's  a  good  idea  to  form  the
normalized variable

u=
x−x i

xi+1−xi

=
x−x i

hi

(2)

As x varies over x i≤ x≤x i+1 , u varies over 0≤u≤1 . Note that

du
dx

=
1
hi

so
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y
′
=

dy
dx

=
dy
du

du
dx

=
1
hi

dy
du

or

dy
du

=hi y
′

We now write

  y=a+b u+c u2
+d u3

dy
du

=b+2 cu+3 d u2

Our system of equations is now (evaluating the above equations at u=0,1 )

      y i=a

   hi yi

′
=b

   y i+1=a+b+c+d

hi yi+1
′

=b+2c+3d

(3)

The simplification from (1) is significant. These can easily be solved to give

a= yi

b=h i yi

′

c=−3 y i−2 h i y i

′
+3 yi+1−h i yi+1

′

d=2 y i+hi y i
′
−2 yi+1+hi y i+1

′

and the interpolating cubic is

y= y i+hi y i
′
u+(−3 yi−2 h i y i

′
+3 y i+1−hi y i+1

′
)u2

+(2 y i+hi y i
′
−2 y i+1+hi y i+1

′
)u3

It can be convenient to separate out the various y terms to obtain

y= y i(1−3u2
+2u3

)+hi yi
′
(u−2u2

+u3
)+ y i+1(3u2

−2u3
)+hi yi+1

′
(−u2

+u3
)

A bit of factoring puts this in a more compact form

y=(1−u)
2
[ y i(1+2u)+hi yi

′
u]+u2

[ y i+1(3−2u)−hi yi+1
′

(1−u)]

The result is the so-called Hermite spline interpolation algorithm.

Hermite spline interpolation

    Given (x1 , y1 , y1
′
) ,(x2 , y2 , y2

′
) ,… ,( xn , yn , yn

′
) , with increasing x values

    For a value x

    Find x i  such that x i< x<x i+1

    Set hi=x i+1− xi  and u=( x−x i)/ hi

    Calculate y=(1−u)
2
[ y i(1+2u)+hi yi

′
u]+u2

[ yi+1(3−2u)−hi yi+1
′

(1−u)]
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Considering  the  entire  interpolation  algorithm  as  a  function,  we  write  y=S ( x) .  A  Scilab
function to perform Hermite spline interpolation is given in Appendix 1 as interpHermite,
and an example of Hermite spline interpolation is shown in Fig. 2.

If we had samples of the form (x i , y i , y i
′
, yi
″
)  we could find 5th order interpolation polynomials

for each interval and so on, in principle, for any number of known derivatives at each sample
point. If we have function and derivative values up to  d m y /dxm ,  the two endpoints of each
interval will provide  2(m+1)  equations. A polynomial with this many coefficients has order
n=2m+1 . 

3 Cubic splines
If we know function and derivative values at  n points,  we can interpolate each interval with
Hermite splines. Often, however, we only know the function values and not the derivative values.
This provides only enough information to uniquely determine a piecewise-linear interpolation.
But the smoothness of a piecewise-cubic interpolation is highly desirable, and we would like to
find a way to keep that property even when we lack derivative information. We will refer to
piecewise cubic interpolation without specific derivative values as cubic splines. 

3.1 Smoothest Hermite spline interpolation

One approach would be to treat the  y i
′
 as unknowns and find the values that optimize some

desirable property of the curve. “Smoothness” is an intuitively appealing property to have. A
smooth  curve is  one in  which the slope does not change rapidly.  A sudden change in slope
produces a “kink” in the curve, which is about as “unsmooth” as you can get. 

Therefore the second derivative – the rate of change of the slope – should be small. Let's write

the integral of the square of the second derivative of  S (x )  as a function of the unknown y i
′
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Fig. 2: y=3e−x sin x . solid circles: sample points, squares: function values, dashed 
line: linear interpolation, solid line: Hermite-spline interpolation. Derivative values 
were estimated numerically.
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values:

ϕ( y1
′
, y2
′
,… , yn

′
)=∫

x1

xn

[S ″(x)]
2

dx (4)

Using the notation

S i(u )=(1−u)
2
[ yi (1+2 u)+h i y i

′
u ]+u2

[ y i+1(3−2u)−hi yi+1
′

(1−u)]

for u as given in (2), we write (4) as

ϕ=∑
i=1

n−1 1
h i
∫

0

1

( d 2

dt 2 S i(u))
2

du

For evenly space samples where hi=h  we show in Appendix 1 that minimizing ϕ  leads to the
equations

y2
′
+2 y1

′
=

3
h
( y2− y1)  , yn

′
+2 yn−1

′
=

3
h
( yn− yn−1) (5)

y i+1
′

+4 y i
′
+ y i−1

′
=

3
h
( y i+1− y i−1)  for i=2,3,… , n−1 (6)

for the y i
′
 values. The case of nonuniform samples is similar but a bit messier because we have

to keep track of different h values. 

3.2 Continuity of second derivatives

Another approach is  to require that  not only the first,  but also the second derivatives of the
interpolation  be  continuous  at  the  knots  x2 , x3 ,… , xn−1 .  There  are  n−2  knots,  since  the
endpoints  x1 , xn  are  not  knots  (no  other  pieces  connect  there).  Continuity  of  the  second
derivatives at the knots provide n−2  equations. For uniformly spaced samples these turn out to
be (6). This tells us that the “smoothest” Hermite spline interpolation we derived previously also
results in continuous second derivatives at all knots. 

We then need two more equations to obtain a unique solution. So-called “natural” end conditions

are  obtained  by  setting  S
″
(x )=0  at  the  endpoints  x1 , xn ,  in  other  words,  we  let  the

interpolation “go straight” at both ends. This leads to equations (5). Therefore a cubic spline
interpolation  with  natural  end conditions  is  precisely the “optimally smooth”  Hermite  spline
interpolation we derived above.

Another option is to specify the end-point slopes  y1
′
, yn
′

. This is called the “fixed-slope” end
conditions.  If we have a good estimate of these slopes then this  makes sense. Otherwise the
choice is arbitrary. 

Finally we can choose the so-called “not-a-knot” conditions where we require the third derivative
of the interpolation to be continuous at the first and last knots. At these knots, therefore, the
cubic functions and the first, second and third derivatives are continuous. But cubics that agree in
this manner are simply the same cubic; there is no other possibility. So what used to be the first
and last knots are no longer knots, hence the name not-a-knot. For the uniformly sampled case
these equations read
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y1
′
+4 y2

′
+ y3

′
=

3
h
( y3− y1)  and yn−2

′
+4 yn−1

′
+ yn

′
=

3
h
( yn− yn−2) (7)

Which end conditions should we choose? The natural conditions are attractive because of their
“maximally smooth” feature. However, in many cases the not-a-knot conditions provide a more
accurate interpolation.  It depends on the underlying function  f (x )  (see  Fig.  3 and  Fig.  4).
Actual functions are not necessarily as smooth as possible! “Common practice” is to use the not-
a-knot  conditions.  In  practice  the  two  end  conditions  produce  very  similar  results  except,
possibly in the first and last intervals. 

3.3 Optimal smoothness of natural cubic spline interpolation

We've spent a lot of time working with cubic splines. We've shown that natural cubic splines are
the smoothest-possible piecewise-cubic interpolation of any set of points. If smoothness is so
desirable, why not try piecewise interpolation with even higher-order polynomials? It turns out
that no other interpolation is smoother than a natural cubic spline. This rather remarkable result
tells us that, as far as smoothness is concerned, cubic splines are the best we can do.

Suppose that S (x )  is the natural cubic spline interpolation of the n samples (x i , y i) . Let f (x )
be  any twice-differentiable function that also interpolates the samples (this could even be the
original function from which the samples were drawn). Then one can show that

∫
x1

xn

[S″(x )]
2

dx≤∫
x1

xn

[ f
″
( x)]

2

dx

This is the sense in which we can say that no function provides a “smoother” interpolation of a
set of data points than does the natural cubic spline. However, as shown in  Fig. 3 and  Fig. 4,
smoother is not necessarily better.
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Fig. 3 A case where natural conditions produce a more accurate interpolation than not-a-
knot conditions.
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4 The interp1 function (Scilab/Matlab)
As for most numerical methods we study, Scilab and Matlab have built-in functions offering
state-of-the-art implementations. The following command

yp = interp1(x,y,xp,str); //str = 'nearest' or 'linear' or 'spline'

Implements one-dimensional interpolation of either nearest-neighbor, linear or spline type. For
spline interpolation not-a-knot end conditions are used.  Here the vectors x,y are sample data,
xp is the vector of x values where we want interpolations, and yp is the vector of interpolated

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig.  4 A case where not-a-knot conditions produce a more accurate interpolation than
natural conditions.

Fig.  5: Ten randomly selected points (dots). Thick (green) line: ninth-order polynomial.
Thin (blue) line: not-a-knot spline. Thin dashed (red) line: natural spline.
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values. This is sufficient for almost all one-dimensional interpolation needs. 

With regards to “wiggle,” the advantage of splines over high-order polynomials for interpolation
is  illustrated  in  Fig.  5.  Notice  too  that  the  difference  of  the  two  spline  end  conditions  is
significant only in the first and last intervals. These data points were chosen at random so there is
no actual underlying f (x ) . However, the spline interpolations certainly appear more “realistic.” 

5 Lanczos (convolution) interpolation
The methods we have considered so far apply to an arbitrary set of samples  (x i , y i) . If the  x
values are uniformly spaced, however, then some ideas from signal processing can be applied.
We turn to that now. Let's suppose we have uniformly spaced samples with x i= x1+(i−1)h . We
can visualize our data as shown in Fig. 6.

Imagine an impulse or “pole” of height  y i  erected vertically with its base “on the ground” at
location  x i .  For  our  purposes  convolution is  the  process  of  replacing  each impulse  with  a
common impulse response function, centered at the impulse and scaled by the “height” y i . The
triangle function Λ(x )  is shown in Fig. 7. 
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Fig. 6 Sample data represented as impulses or “poles” of height yi .

Fig. 7: The “triangle” function Λ(x ) .
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If we replace each impulse by a stretched version of the triangle function

Λ ( x / h)={1−|x /h| |x|≤h
0 |x|>h

scaled by y i , then the sum of these

f (x)=∑
i=1

n

y i Λ( x−x i

h )
produces  the  interpolation  shown  in  Fig.  8.  We  recognize  this  as  the  piecewise  linear
interpolation of the data with the addition of linear extrapolations at the two ends. This naturally
leads  us  to  wonder  if  using  a  different  impulse  response  function  might  produce  a  “better”
interpolation. 

Thinking of x as time and y as the amplitude of an audio signal, there is a remarkable theorem
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Fig. 8: Convolution of impulses with triangle function. Thick gray curve is sum of all 
triangle functions and interpolates the data points. 

Fig. 9 The sinc function.



Lecture 15: Interpolation II 10/12

due to Nyquist which says that provided: 1) the signal from which the audio samples were draw
contains “frequency components” only within a limited range, and 2) the sample separation h is
properly chosen, then a convolution interpolation using the  sinc function (pronounced “sink”)
will exactly recreate the original function f (x ) . Mathematically

y= f (x )=∑
i=−∞

∞

y i sinc( x−x i

h )
The sinc function is 

sinc(x )=
sin π x
π x

and  is  plotted  in  Fig.  9.  Note  that  sinc 0=1  and  sinc n=0  for  n a  non-zero  integer.
Unfortunately the sinc function extends to x →±∞ , although the amplitude of the bumps drop
off as  1/|x| . If we are interpolating many points, we'll have to add a contribution from each
point. A compromise proposed by Lanczos is to “window” the sinc function by another sinc
function to produce the Lanczos kernel

L( x)={sinc ( x ) sinc( x
a) | x|≤a

0 | x|>a

where a is typically chosen to be a small integer (most often 2 or 3). This is plotted in Fig. 10.
The Lanczos interpolation is

y= ∑
j=i+1−a

i+a

y j L( x−x j

h )
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Fig. 10 The Lanczos kernel for a=1,2,3 .
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where i is the index such that x i≤ x<x i+1 .  In this expression only the 2 a  nearest sample points
contribute to the interpolation at a given value of x. An example of Lanczos interpolation (with
a=3 ) is shown in .

6 Appendix 1 – Scilab code

6.1 Hermite spline interpolation
0001  //////////////////////////////////////////////////////////////////////
0002  // interpHermite.sci
0003  // 2014-06-25, Scott Hudson, for pedagogic purposes
0004  // Given n samples x(i),y(i),y1(i) in the column vectors x,y,y1
0005  // where y(i)=f(x(i)) and y1(i) is the derivative of f(x) at x(i),
0006  // interpolate at points xp using Hermite splines.
0007  // Note: x and xp values must be in ascending order.
0008  //////////////////////////////////////////////////////////////////////
0009  function yp=interpHermite(x, y, y1, xp)
0010    n = length(x);
0011    m = length(xp);
0012    yp = zeros(xp);
0013    i = 1; //start linear search at first element
0014    for j=1:m
0015      while (xp(j)>x(i+1)) //find j so that x(j)<=u(i)<=x(j+1)
0016        i = i+1;
0017      end
0018      h = x(i+1)-x(i);
0019      t = (xp(j)-x(i))/h;
0020      yp(j) = (t-1)^2*(y(i)*(2*t+1)+y1(i)*h*t) ..
0021        +t^2*(y(i+1)*(3-2*t)+y1(i+1)*h*(t-1));
0022    end
0023  endfunction
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Fig. 11: Seven data points and Lanczos interpolation.
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7 Appendix 2 – Smoothest Hermite spline interpolation
Assume we have n samples (x i , y i) , and the x values are equally spaced x i= x1+(i−1)h . Let

ϕ=∑
i=1

n−1
1
h
∫

0

1

( d 2

dt 2 S i(t))
2

dt

where

S i(t )=(t−1)
2[ yi (2 t+1)+ y i

′
h t ]+t2[ y i+1(3−2 t)+ yi+1

′
h( t−1)]

One can show that (a computer algebra program helps!)

∫
0

1

( d 2

dt 2 S i(t ))
2

dt=12( y i+1− y i)
2
−12h[( y i+1

′
+ yi

′
)( y i+1− y i)]+4h2(( y i

′
)

2
+ y i

′
y i+1
′

+( y i+1
′

)
2)

For a knot 1<i<n , y j
′

 appears in S i−1  and S i . Calling

4 w=
1
h
∫
0

1

( d 2

dt 2 S i−1(t))
2

dt+
1
h
∫

0

1

( d 2

dt2 S i(t))
2

dt

we have

w=   3( y i− yi−1)
2
−3h [( y i

′
+ y j−1

′
)( y i− y i−1)]+h2(( y i−1

′
)

2
+ y i−1

′
yi

′
+( yi

′
)

2)
       +3( y i+1− y i)

2−3h [( y i+1
′

+ yi
′
)( yi+1− y i)]+h2(( y i

′
)2+ y i

′
y i+1
′

+( y i+1
′

)2)
Setting

∂ w

∂ y i
′
=h2

( yi+1
′

+4 y i
′
+ yi−1

′
)+3h( yi−1− y i+1)=0

we have

y i+1
′

+4 y i
′
+ y i−1

′
=

3
h
( y i+1− y i−1) (8)

For the first interval

∂

∂ y1
′ {3( y2− y1)

2
−3h1[( y2

′
+ y1

′
)( y2− y1)]+h1

2(( y1
′
)

2
+ y1

′
y2
′
+( y2

′
)

2)}=0

gives us

y2
′
+2 y1

′
=

3
h
( y2− y1) (9)

while for the last interval we find

yn
′
+2 yn−1

′
=

3
h
( yn− yn−1) (10)
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