
Lecture 14
Interpolation I

1 Introduction
A common problem faced in engineering is that we have some physical system or process with
input  x and output  y. We assume there is a functional relation between input and output of the
form  y= f (x ) ,  but  we  don't  know  what  f is.  For  n particular  inputs  x1<x2<⋯<xn  we
experimentally determine the corresponding outputs y i= f (x i) . From these we wish to estimate
the output y for an arbitrary input x where x1≤x≤ xn . This is the problem of interpolation. 

If the experiment is easy to perform then we could just directly measure y= f (x ) , but typically
this  is not practical.  Experimental determination of an input-output  relation is often difficult,
expensive and time consuming. Or, y= f (x )  may represent the result of a complex numerical
simulation that is not practical to perform every time we have a new x value. In either case the
only practical solution may be to estimate y by interpolating known values.

To illustrate various interpolation methods, we will use the example of

y= f (x )=3e−x sin x

sampled at x=0,1,2,3,4,5 . These samples are the black dots in Fig. 1. 

2 Nearest neighbor or “staircase” interpolation
A simple interpolation scheme for estimating f (x )  is to find the sample value x i  that is nearest
to  x and then assume y= f (x )= y i . This is called  nearest neighbor interpolation, and we can
describe it as follows.

Nearest-neighboor interpolation

  Find the value of i that minimizes the distance |x− xi|
  Set y= y i

The interpolation will  be constant near a sample point.  As we move towards another sample
point the interpolation will discontinuously jump to a new value. This produces the “staircase”
appearance of the solid line in  Fig. 1. Except for the special  case where all  y i  are equal (a
constant function), nearest neighbor interpolation produces a discontinuous output. 

Although this may not look like a “realistic” function, the fact is that without more information
than just  the sample  points  we don't  have any basis  to  declare one interpolation  better  than
another. Digital systems often produce output with piecewise-constant, discrete levels such as
this. On the other hand, if we know  that the function  f (x )  is the result of some continuous
physical process, then a nearest-neighbor interpolation is almost certainly a poor representation
of the “true” function. 
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3 Linear interpolation

An obvious and easy way to interpolate data is to “connect the dots” with straight lines. This
produces a continuous interpolation (Fig. 1) but which has “kinks” at the sample points where the
slope is discontinuous. The algorithm is

Linear interpolation

  Find k such that xk<x< xk+1

  Set y= yk+
yk+1− yk

xk+1−xk

( x−xk )

If the samples are closely spaced, linear interpolation works quite well. In fact it's used by default
for the plot() routine in Scilab/Matlab. However, when sampling is sparse (as in Fig. 1), linear
interpolation  is  unlikely  to  give  an  accurate  representation  of  a  “smooth”  function.  This
motivates us to investigate more powerful interpolation methods. 

4 Polynomial interpolation
Through  two  points  (x1 , y1) ,(x2 , y2)  we  can  draw  a  unique  line,  a  1st order  polynomial.
Through three points  (x1 , y1) ,(x2 , y2) ,( x3 , y3)  we can draw a  unique  parabola,  a  2nd order
polynomial. In general, through n points (x i , yi) , i=1,2,… , n  we can draw a unique polynomial
of order (n−1) . Although this polynomial is unique, there are different ways to represent and
derive it. We start with the most obvious approach, the so-called monomial basis.

4.1 Monomial basis

A term in a single power of x, such as xk , is called a monomial. Adding two or more of these
together produces a  polynomial. A polynomial of order  (n−1)  with arbitrary coefficients is a
linear combination of monomials:
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line, linear interpolation
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y=p (x )=c1+c2 x+c3 x2
+⋯+cn xn−1

We want this polynomial to pass through our samples (x i , y i) , i=1,2,… , n . We therefore require

c1+c2 x1+c3 x1
2
+⋯+cn x1

n−1
= y1

c1+c2 x2+c3 x2
2
+⋯+cn x2

n−1
= y2

                     ⋮
c1+c2 xn+c3 xn

2
+⋯+cn xn

n−1
= yn

which has the form of  n equations in  n unknown coefficients  c i . We can express this as the
linear system

A c=y

where

A=(
1 x1 x1

2
⋯ x1

n−1

1 x2 x2
2

⋯ x2
n−1

⋮ ⋮ ⋮ ⋮ ⋮

1 xn xn
2

⋯ xn
n−1 )  ,  c=(

c1

c2

⋮
cn
)  ,  y=(

y1

y2

⋮
yn

) (1)

A matrix of the form  A, in which each column contains the sample values to some common
power  is  called  a  Vandermonde matrix.  The  coefficient  vector  c is  easily  calculated  in
Scilab/Matlab as

n = length(x);
A = ones(x);
for k=1:n-1
  A = [A,x.^k];
end
c = A\y;

Here we've assumed that the vector x is a column vector. If it is a row vector replace it by the
transpose (x'). Likewise for the vector y. 

Example  1:Suppose  xT
=[0,1,2]  and  yT

=[2,1,3] .  The coefficients  of  the  2nd

order polynomial that passes through these points are found from

(
1 0 0
1 1 1
1 2 4)(

c1

c2

c3
)=(

2
1
3)

Solving the system we obtain

c=(
  2

−
5
2

  
3
2
)

so the interpolating polynomial is
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y=2−
5
2

x+
3
2

x2

A Scilab program to interpolate  n samples appears in Appendix 2 as  interpMonomial().
Applying this  to the sample data shown in  Fig. 1 produces the results  shown in  Fig. 2. The
resulting interpolation gives a good representation of the underlying function except near x=4.5
.

Numerically that is all there is to polynomial interpolation. However, it does require the solution
of a linear system which for a high-order polynomial must be done numerically. The monomial
approach starts having problems for very high-order polynomials due to round-off error. We'll
come back to this.

In additional to numerical considerations, there are times when we would like to be able to write
the interpolating polynomial directly, without solving a linear system. This is particularly true
when we use polynomial interpolation as part of some numerical method. In this case we don't
know what the x and y values are because we are developing a method that can be applied to any
data. Therefore we want to express the interpolating polynomial coefficients as some algebraic
function of the sample points. There are two classic way to do this: Lagrange polynomials and
Newton polynomials.

4.2 Lagrange polynomials

Through  n points  we  can  pass  a  polynomial  of  order  n−1 .  Lagrange  polynomials  are  an
ingenious way to write this polynomial down by inspection. Here's the idea.

Suppose  we have  three  data  points:  (x1 ,1) ,( x2 ,0) ,( x3 ,0) .  There  is  a  unique  second-order
polynomial  p (x )  which  interpolates  these  data.  Since  p (x2)=0 ,  x2  is  a  root  of  the
polynomial. That means the polynomial must have a factor (x−x2) . Likewise, p (x3)=0  so it
also has a factor (x−x3) . But the two factors (x−x2)(x− x3)  by themselves form a 2nd order

polynomial  x2
−(x2+ x3) x+x2 x3 .  Therefore  to  within  a  multiplicative  constant  p (x)  must
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Fig.  2 5th order  polynomial  interpolation.  Solid  dots  are  samples;  squares  are  actual
function values (for comparison); line is interpolation.
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simply be the product (x−x2)(x− x3) , that is

p (x)=c( x−x2)( x−x3)

The constant is fixed by the third constraint p (x1)=1  to give us

p (x)=
( x−x2)( x−x3)

(x1−x2)( x1−x3)

From the form of this quadratic it is immediately clear that  p (x1)=1  and  p (x2)=p (x3)=0 .
We'll call this

L1( x)=
(x− x2)( x−x3)

( x1− x2)( x1− x3)

and L1( x1)=1 , L1( x2)=0 , L1(x3)=0 . Now consider the data points (x1 ,0) , (x2 ,1) ,( x3 ,0) . By
the same logic the interpolating polynomial must be

L2( x)=
(x−x1)( x−x3)

( x2−x1)( x2−x3)

and  L2( x1)=0 , L2(x2)=1 , L2( x3)=0 . Finally consider the data points  (x1 ,0) , (x2 ,0) ,(x3 ,1) .
These are interpolated by

L3( x)=
( x−x1)(x− x2)

( x3−x1)(x3− x2)

and L3( x1)=0 , L3( x2)=0 , L3( x3)=1 . 

Now suppose we have three data points (x1 , y1) ,(x2 , y2) ,( x3 , y3) . The claim is that the  second-
order interpolating polynomial is

p (x)= y1 L1( x)+ y2 L2( x)+ y3 L3( x)

Since L1 , L2 , L3  are each second-order, a linear combination of them is also. We can verify that
it interpolates our three data points by simply calculating p (x1) , p( x2) , p( x3) . For example

p (x2)= y1 L1( x2)+ y2 L2(x2)+ y3 L3(x2)= y1(0)+ y2(1)+ y3(0)= y2

The Lagrange polynomial is not in the monomial form, but if we expand out the terms we will
(to within round-off error) get the same result we obtain with the monomial-basis method.

Example 2: Suppose as in Example 1 xT
=[0,1,2]  and yT

=[2,1,3 ] . We have

L1( x)=
( x−1)( x−2)

(0−1)(0−2)
 , L2( x)=

( x−0)(x−2)

(1−0)(1−2)
 , L3( x)=

( x−0)(x−1)

(2−0)(2−1)

so

y=
2
2
(x−1)(x−2)+

1
−1

x ( x−2)+
3
2

x (x−1)

Expanding out the terms and collecting like powers we obtain
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y=2−
3
2

x+
3
2

x2

which is the result we obtained in Example 1.

In general, if we have n sample points (x i , y i) , i=1,2,… , n  we form the n polynomials

Lk (x )=∏
i≠k

x− xi

xk− xi

(2)

for  k=1,2,… , n , where the  P symbol signifies the product of the  n−1  terms indicated. The
interpolating polynomial is then

y=p (x )=∑
k =1

n

y k Lk (x) (3)

Lagrange polynomials are very useful analytically since they can be written down by inspection
without solving any equations. They also have good numerical properties.  A Scilab program to
interpolate  n samples  using  the  Lagrange  method  appears  in  Appendix  2  as
interpLagrange(). It's important to remember that there is a unique polynomial of order
n−1  which  interpolates  a  given  n points.  Whatever  method  we  use  to  compute  this  must
produce the same polynomial (to within our numerical limitations). 

4.3 Newton polynomials

Newton polynomials are yet another way to obtain the n−1  order polynomial that interpolates a
given  n points.  Suppose we have  a  single sample  (x1 , y1) .  The  zeroth-order  polynomial  (a
constant function) passing through this point is

p0(x )=c1

where  c1= y1 .  Now  suppose  we  have  an  additional  point  (x2 , y2) .  The  polynomial  that
interpolates these two points will now be first order. Newton's idea was to write it in the form

p1(x)=c1+c2( x−x1)

because this guarantees that  p1(x1)=c1= p0( x1)= y1 , so our coefficient  c1  is unchanged. We
need only calculate a single “new” coefficient c2  from

p1( x2)= y2=c1+c2(x2−x1)

This gives us

c2=
y2−c1

x2−x1

=
y2− y1

x2−x1

so

p1(x)= y1+
y2− y1

x2− x1

(x−x1)

Notice  that  this  looks  somewhat  like  f (x )= f (x1)+ f
′
(x1)( x−x1)  where  f

′
(x1)  is

approximated by “change in  y over change in  x.” That is it has the form of a  discrete Taylor
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series. 

Now suppose we add a third point (x3 , y3) . Our interpolating polynomial will now need to be
quadratic, but we want to write it in a way that “preserves” the fit we've already obtained for the
first two points. Therefore we write

p2(x )=c1+c2(x−x1)+c3(x−x1)( x−x2)

which guarantees that  p2(x1)=c1= y1=p0(x1)  and  p2(x2)=c1+c2( x2−x1)= y2=p1( x2) . The
single new coefficient c3  is obtained from

p2(x3)= y3=c1+c2(x3−x1)+c3(x3−x1)( x3− x2)

so that

c3=
y3−c1−c2( x3−x1)

(x3− x1)(x3−x2)
=

y3− y1

x3−x1

−c2

x3−x2

=

y3− y1

x3− x1

−
y2− y1

x2−x1

x3−x2

The coefficient c3  has a form that suggests “difference in the derivative of y over difference in
x” – the form of a second derivative. Our interpolating polynomial

p2(x )= y1+
y2− y1

x2−x1

(x− x1)+

y3− y1

x3− x1

−
y 2− y1

x2−x1

x3−x2

(x−x1)( x−x2)

is roughly analogous to a second-order Taylor series

f (x)= f (x1)+ f
′
(x1)(x− x1)+

1
2

f
″
( x1)(x−x1)

2

We might think of p2(x )  as a second-order discrete Taylor series. 

If we now add a fourth data point (x4 , y 4)  we will need a third-order interpolating polynomial
p3(x)  which we write as

p3(x)=c1+c2(x− x1)+c3(x− x1)(x− x2)+c4(x− x1)(x−x2)(x− x3)

As before all the coefficients except the “new one” will be unchanged, so we need only calculate
the single new coefficient c4 . 

Suppose instead we skip calculating the polynomials p0(x ) , p1( x) , p2( x)  and want to calculate
p3(x)  directly from the four data points. The four coefficients are determined by the conditions

(
1 0 0 0
1 (x2−x1) 0 0
1 (x3−x1) (x3−x1)( x3−x2) 0
1 (x4−x1) ( x4−x1)( x4−x2) ( x4−x1)( x4−x2)(x4− x3)

)(
c1

c2

c3

c4
)=(

y1

y2

y3

y4
) (4)

The matrix is lower-triangular, so we can solve it using forward substitution. However, if we
solve it using Gauss-Jordan elimination an interesting pattern emerges.
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The augmented matrix is

(
1 0 0 0 y1

1 (x2−x1) 0 0 y2

1 (x3−x1) (x3−x1)( x3−x2) 0 y3

1 (x4−x1) ( x4−x1)( x4−x2) ( x4−x1)( x4−x2)(x4− x3) y4
)

Subtracting the row 1 from rows 2, 3 and 4

(
1 0 0 0 y1

0 (x2−x1) 0 0 y2− y1

0 ( x3− x1) (x3− x1)(x3−x2) 0 y3− y1

0 (x4−x1) (x4− x1)(x4− x2) (x4− x1)(x4− x2)(x4−x3) y4− y1
)

Normalizing rows 2, 3 and 4 by the element in the 2nd column

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2−x1

0 1 (x3− x2) 0
y3− y1

x3− x1

0 1 (x4− x2) (x4−x2)( x4−x3)
y4− y1

x4−x1

)
Note the cancellation of the term (x3−x1)  in row 3 and (x4− x1)  in row 4. Now substract row 2
from rows 3 and 4.
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Fig.  3:  Monomial  (thick  green  line),  Lagrange  (medium blue  line)  and  Newton (thin  dashed  red  line)
polynomials. At left N=11 point (hece 10 th order polynomials). Agreement is good. At right N=13 points (12 th

order polynomials). The monomial polynomial fails to interpolate the data. The y data values were chosen
randomly. The x values are 0,1,2,...,N-1.
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(
1 0 0 0 y1

0 1 0 0
y2− y1

x2− x1

0 0 (x3− x2) 0
y3− y1

x3− x1

−
y2− y1

x2−x1

0 0 (x4− x2) (x4−x2)( x4−x3)
y4− y1

x4−x1

−
y2− y1

x2−x1

)
Normalizing rows 3 and 4 by the element in the 3rd column

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2− x1

0 0 1 0

y3− y1

x3− x1

−
y2− y1

x2−x1

x3−x2

0 0 1 (x4− x3)

y4− y1

x4−x1

−
y2− y1

x2−x1

x4−x2

)
Note the cancellation in row 4. Subtract row 3 from row 4

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2−x1

0 0 1 0

y3− y1

x3− x1

−
y2− y1

x2−x1

x3−x2

0 0 0 (x4− x3)

y4− y1

x4−x1

−
y2− y1

x2−x1

x4−x2

−

y3− y1

x3− x1

−
y 2− y1

x2−x1

x3−x2

)
Normalize row 4 by its element in column 4
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(
1 0 0 0 y1

0 1 0 0
y 2− y1

x2−x1

0 0 1 0

y3− y1

x3−x1

−
y2− y1

x2− x1

x3− x2

0 0 0 1

y4− y1

x4− x1

−
y2− y1

x2−x1

x4−x2

−

y3− y1

x3−x1

−
y2− y1

x2− x1

x3− x2

x4−x3

)
The 5th column now contains the coefficients of the Newton polynomial. Following through these
steps we arrive at the very compact algorithm for calculating the Newton coefficients.

Calculating Newton coefficients

  c = y(:); //c is a column vector of the y values
  for i=1:n-1
    for j=i+1:n
      c(j) = (c(j)-c(i))/(x(j)-x(i));
    end
  end

This  is  used  in  the  Scilab  program  interpNewton which  appears  in  Appendix  2.  This
interpolates n sample points using the Newton method. 

4.4 Numerical considerations and polynomial “wiggle”

In  principle,  for  a  given  set  of  data  the  monomial,  Lagrange  and  Newton  interpolating
polynomials  are  identical.  They  are  merely  expressed  in  different  “formats.”  However,
numerically the monomial polynomial method suffers from round-off error more than the other
two methods. This is illustrated in Fig. 3. In these examples we see that for higher than about a
10th order polynomial the monomial basis fails to accurately interpolate the data. The problem is
that the Vandermonde matrix in (1) tends to become nearly singular for large n. For this reason it
is not recommended for use except for low-order problems, if at all. 

The  Lagrange and  Newton  polynomials  are  both  quite  stable  numerically.  The  form of  the
Newton algorithm allows it to be implemented with fewer floating-point operations, and so it
tend  to  be  faster,  especially  at  high  order.  Numerically,  therefore,  Newton  polynomials  are
arguably the best choice for polynomial interpolation. 

Even  without  round-off  error,  high-order  polynomials  tend  to  produce  unsatisfactory
interpolation. The problem is “polynomial wiggle.” This can be seen in the right graph of Fig. 3.
Near the “middle” x values the interpolation seems reasonable, but at the left and right extremes
it oscillates between very large  y values – much larger than any of the sample  y values. Very
slight changes in the y values of the sample points can cause very large changes in this wiggle
effect. Although we are guaranteed to be able to find an (n-1)th order polynomial passing through
n samples,  there is no guarantee that it  will be “smooth.” In fact for large  n it  will  typically
display these large oscillations. We consider alternative interpolation methods in the next lecture.
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5 Appendix 1 – Lagrange polynomials for equally spaced points
Suppose we have n sample points (x1 , y1) ,(x2 , y2) ,… ,( xn , yn)  with uniformly spaced x values
given by x i= x1+(i−1)h . Define

t=
x−x1

h

so that

x= x1+h t

Written at (t i , y i)  samples, our data have the form

(0 , y1) ,(1 , y2) ,… ,(n−1 , yn)

Suppose we fit a polynomial y= p(t)  through these data. Then the polynomial 

y=q (x)=p (t)= p( x− x1

h )
interpolates the (x i , y i)  samples. We limit consideration to the Lagrange basis, as it is the most
useful theoretically.  Here we list  the  p (t)  polynomials of orders 0,1,2,3,4 which interpolate
n=1,2,3,4,5 sample points. These can easily be derived from formulas (2) and (3).

For n=1

p0(t )= y1

For n=2

p1( t)= y2 t− y1(t−1)

For n=3

p2(t)=
1
2

y3t (t−1)− y2 t(t−2)+
1
2

y1(t−1)(t−2)

For n=4

p3(t)=
1
6

y4 t (t−1)(t−2)−
1
2

y3 t (t−1)( t−3)+
1
2

y2 t( t−2)(t−3)−
1
6

y1(t−1)( t−2)(t−3)

For n=5

p4(t)=
1

24
y5 t( t−1)(t−2)( t−3)−

1
6

y4 t(t−1)(t−2)(t−4)+
1
4

y3t (t−1)(t−3)(t−4)

                                            −
1
6

y2 t( t−2)(t−3)( t−4)+
1

24
y1(t−1)( t−2)(t−3)( t−4)
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6 Appendix 2 – Scilab code

6.1 Monomial-basis polynomial interpolation
0001  //////////////////////////////////////////////////////////////////////
0002  // interpMonomial.sci
0003  // interpLagrangeCoeff.sci
0004  // 2014-06-25, Scott Hudson, for pedagogic purposes only
0005  // Given n samples x(i),y(i), in the column vectors x,y
0006  // calculate the coefficients c(i) of the (n-1) order 
0007  // monomial interpolating polynomial and evaluate at points xp.
0008  //////////////////////////////////////////////////////////////////////
0009  function yp = interpMonomial(x, y, xp)
0010    n = length(x); //x and y must be column vectors of length n
0011    A = ones(x); //build up the Vandermonde matrix A
0012    for k=1:n-1
0013      A = [A,x.^k]; //each column is a power of the column vector x
0014    end
0015    c = A\y; //solve for coefficients
0016    yp = ones(xp)*c(1); //evaluate polynomial at desired points
0017    for k=2:n
0018      yp = yp+c(k)*xp.^(k-1);
0019    end
0020  endfunction

6.2 Lagrange-basis polynomial interpolation
0001  //////////////////////////////////////////////////////////////////////
0002  // interpLagrange.sci
0003  // 2014-06-25, Scott Hudson, for pedagogic purposes only
0004  // Given n samples x(i),y(i), in the column vectors x,y
0005  // evaluate the Lagrange interpolating polynomial at points xp.
0006  //////////////////////////////////////////////////////////////////////
0007  function yp = interpLagrange(x, y, xp)
0008    n = length(x);
0009    yp = zeros(xp);
0010    for k=1:n //form Lagrange polynomial L_k
0011      L = 1;
0012      for i=1:n
0013        if (i~=k)
0014          L = L.*(xp-x(i))/(x(k)-x(i));
0015        end
0016      end
0017      yp = yp+y(k)*L;
0018    end
0019  endfunction
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6.3 Newton-basis polynomial interpolation
0001  //////////////////////////////////////////////////////////////////////
0002  // interpNewton.sci
0003  // 2014-06-25, Scott Hudson, for pedagogic purposes
0004  // Given n-dimensional vectors x and y, compute the coefficients
0005  // c(1), c(2), ..., c(n) of the Newton interpolating polynomial y=p(x)
0006  // and evaluate at points xp.
0007  //////////////////////////////////////////////////////////////////////
0008  function yp = interpNewton(x, y, xp)
0009    n = length(y);
0010    c = y(:);
0011    for i=1:n-1
0012      for j=i+1:n
0013        c(j) = (c(j)-c(i))/(x(j)-x(i));
0014      end
0015    end
0016    yp = ones(xp)*c(1);
0017    u = ones(xp);
0018    for i=2:n
0019      u = u.*(xp-x(i-1));
0020      yp = yp+c(i)*u;
0021    end
0022  endfunction

6.4 Coefficients of Newton polynomial
0001  //////////////////////////////////////////////////////////////////////
0002  // interpNewtonCoeffs.sci
0003  // 2014-06-25, Scott Hudson, for pedagogic purposes only
0004  // Given n samples x(i),y(i), in the column vectors x,y
0005  // calculate the coefficients c(i) of the
0006  // (n-1) order interpolating Newton polynomial
0007  //////////////////////////////////////////////////////////////////////
0008  function c = interpNewtonCoeffs(x, y)
0009    n = length(y);
0010    c = y(:);
0011    for j=2:n
0012      for i=n:-1:j
0013        c(i) = (c(i)-c(i-1))/(x(i)-x(i-j+1));
0014      end
0015    end
0016  endfunction
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