
Lecture 14
Interpolation I

1 Introduction
A common problem faced in engineering is that we have some physical system or process with
input x and output y. We assume there is a functional relation between input and output of the
form y= f (x) , but we don't know what f is. For n particular inputs x1<x2<⋯<xn we
experimentally determine the corresponding outputs y i= f (x i) . From these we wish to estimate
the output y for an arbitrary input x where x1≤x≤ xn . This is the problem of interpolation.

If the experiment is easy to perform then we could just directly measure y= f (x) , but typically
this is not practical. Experimental determination of an input-output relation is often difficult,
expensive and time consuming. Or, y= f (x) may represent the result of a complex numerical
simulation that is not practical to perform every time we have a new x value. In either case the
only practical solution may be to estimate y by interpolating known values.

To illustrate various interpolation methods, we will use the example of

y= f (x)=3e−x sin x

sampled at x=0,1,2,3,4,5 . These samples are the black dots in Fig. 1.

2 Nearest neighbor or “staircase” interpolation
A simple interpolation scheme for estimating f (x) is to find the sample value x i that is nearest
to x and then assume y= f (x)= y i . This is called nearest neighbor interpolation, and we can
describe it as follows.

Nearest-neighboor interpolation

 Find the value of i that minimizes the distance |x− xi|
 Set y= y i

The interpolation will be constant near a sample point. As we move towards another sample
point the interpolation will discontinuously jump to a new value. This produces the “staircase”
appearance of the solid line in Fig. 1. Except for the special case where all y i are equal (a
constant function), nearest neighbor interpolation produces a discontinuous output.

Although this may not look like a “realistic” function, the fact is that without more information
than just the sample points we don't have any basis to declare one interpolation better than
another. Digital systems often produce output with piecewise-constant, discrete levels such as
this. On the other hand, if we know that the function f (x) is the result of some continuous
physical process, then a nearest-neighbor interpolation is almost certainly a poor representation
of the “true” function.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 2/13

3 Linear interpolation

An obvious and easy way to interpolate data is to “connect the dots” with straight lines. This
produces a continuous interpolation (Fig. 1) but which has “kinks” at the sample points where the
slope is discontinuous. The algorithm is

Linear interpolation

 Find k such that xk<x< xk+1

 Set y= yk+
yk+1− yk

xk+1−xk

(x−xk)

If the samples are closely spaced, linear interpolation works quite well. In fact it's used by default
for the plot() routine in Scilab/Matlab. However, when sampling is sparse (as in Fig. 1), linear
interpolation is unlikely to give an accurate representation of a “smooth” function. This
motivates us to investigate more powerful interpolation methods.

4 Polynomial interpolation
Through two points (x1 , y1) ,(x2 , y2) we can draw a unique line, a 1st order polynomial.
Through three points (x1 , y1) ,(x2 , y2) ,(x3 , y3) we can draw a unique parabola, a 2nd order
polynomial. In general, through n points (x i , yi) , i=1,2,… , n we can draw a unique polynomial
of order (n−1) . Although this polynomial is unique, there are different ways to represent and
derive it. We start with the most obvious approach, the so-called monomial basis.

4.1 Monomial basis

A term in a single power of x, such as xk , is called a monomial. Adding two or more of these
together produces a polynomial. A polynomial of order (n−1) with arbitrary coefficients is a
linear combination of monomials:

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1 circles: samples of 3 e−x sin x , solid line: nearest-neighbor interpolation; dashed
line, linear interpolation

Lecture 14: Interpolation I 3/13

y=p (x)=c1+c2 x+c3 x2
+⋯+cn xn−1

We want this polynomial to pass through our samples (x i , y i) , i=1,2,… , n . We therefore require

c1+c2 x1+c3 x1
2
+⋯+cn x1

n−1
= y1

c1+c2 x2+c3 x2
2
+⋯+cn x2

n−1
= y2

 ⋮
c1+c2 xn+c3 xn

2
+⋯+cn xn

n−1
= yn

which has the form of n equations in n unknown coefficients c i . We can express this as the
linear system

A c=y

where

A=(
1 x1 x1

2
⋯ x1

n−1

1 x2 x2
2

⋯ x2
n−1

⋮ ⋮ ⋮ ⋮ ⋮

1 xn xn
2

⋯ xn
n−1) , c=(

c1

c2

⋮
cn
) , y=(

y1

y2

⋮
yn

) (1)

A matrix of the form A, in which each column contains the sample values to some common
power is called a Vandermonde matrix. The coefficient vector c is easily calculated in
Scilab/Matlab as

n = length(x);
A = ones(x);
for k=1:n-1
 A = [A,x.^k];
end
c = A\y;

Here we've assumed that the vector x is a column vector. If it is a row vector replace it by the
transpose (x'). Likewise for the vector y.

Example 1:Suppose xT
=[0,1,2] and yT

=[2,1,3] . The coefficients of the 2nd

order polynomial that passes through these points are found from

(
1 0 0
1 1 1
1 2 4)(

c1

c2

c3
)=(

2
1
3)

Solving the system we obtain

c=(
 2

−
5
2

3
2
)

so the interpolating polynomial is

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 4/13

y=2−
5
2

x+
3
2

x2

A Scilab program to interpolate n samples appears in Appendix 2 as interpMonomial().
Applying this to the sample data shown in Fig. 1 produces the results shown in Fig. 2. The
resulting interpolation gives a good representation of the underlying function except near x=4.5
.

Numerically that is all there is to polynomial interpolation. However, it does require the solution
of a linear system which for a high-order polynomial must be done numerically. The monomial
approach starts having problems for very high-order polynomials due to round-off error. We'll
come back to this.

In additional to numerical considerations, there are times when we would like to be able to write
the interpolating polynomial directly, without solving a linear system. This is particularly true
when we use polynomial interpolation as part of some numerical method. In this case we don't
know what the x and y values are because we are developing a method that can be applied to any
data. Therefore we want to express the interpolating polynomial coefficients as some algebraic
function of the sample points. There are two classic way to do this: Lagrange polynomials and
Newton polynomials.

4.2 Lagrange polynomials

Through n points we can pass a polynomial of order n−1 . Lagrange polynomials are an
ingenious way to write this polynomial down by inspection. Here's the idea.

Suppose we have three data points: (x1 ,1) ,(x2 ,0) ,(x3 ,0) . There is a unique second-order
polynomial p (x) which interpolates these data. Since p (x2)=0 , x2 is a root of the
polynomial. That means the polynomial must have a factor (x−x2) . Likewise, p (x3)=0 so it
also has a factor (x−x3) . But the two factors (x−x2)(x− x3) by themselves form a 2nd order

polynomial x2
−(x2+ x3) x+x2 x3 . Therefore to within a multiplicative constant p (x) must

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 2 5th order polynomial interpolation. Solid dots are samples; squares are actual
function values (for comparison); line is interpolation.

Lecture 14: Interpolation I 5/13

simply be the product (x−x2)(x− x3) , that is

p (x)=c(x−x2)(x−x3)

The constant is fixed by the third constraint p (x1)=1 to give us

p (x)=
(x−x2)(x−x3)

(x1−x2)(x1−x3)

From the form of this quadratic it is immediately clear that p (x1)=1 and p (x2)=p (x3)=0 .
We'll call this

L1(x)=
(x− x2)(x−x3)

(x1− x2)(x1− x3)

and L1(x1)=1 , L1(x2)=0 , L1(x3)=0 . Now consider the data points (x1 ,0) , (x2 ,1) ,(x3 ,0) . By
the same logic the interpolating polynomial must be

L2(x)=
(x−x1)(x−x3)

(x2−x1)(x2−x3)

and L2(x1)=0 , L2(x2)=1 , L2(x3)=0 . Finally consider the data points (x1 ,0) , (x2 ,0) ,(x3 ,1) .
These are interpolated by

L3(x)=
(x−x1)(x− x2)

(x3−x1)(x3− x2)

and L3(x1)=0 , L3(x2)=0 , L3(x3)=1 .

Now suppose we have three data points (x1 , y1) ,(x2 , y2) ,(x3 , y3) . The claim is that the second-
order interpolating polynomial is

p (x)= y1 L1(x)+ y2 L2(x)+ y3 L3(x)

Since L1 , L2 , L3 are each second-order, a linear combination of them is also. We can verify that
it interpolates our three data points by simply calculating p (x1) , p(x2) , p(x3) . For example

p (x2)= y1 L1(x2)+ y2 L2(x2)+ y3 L3(x2)= y1(0)+ y2(1)+ y3(0)= y2

The Lagrange polynomial is not in the monomial form, but if we expand out the terms we will
(to within round-off error) get the same result we obtain with the monomial-basis method.

Example 2: Suppose as in Example 1 xT
=[0,1,2] and yT

=[2,1,3] . We have

L1(x)=
(x−1)(x−2)

(0−1)(0−2)
 , L2(x)=

(x−0)(x−2)

(1−0)(1−2)
 , L3(x)=

(x−0)(x−1)

(2−0)(2−1)

so

y=
2
2
(x−1)(x−2)+

1
−1

x (x−2)+
3
2

x (x−1)

Expanding out the terms and collecting like powers we obtain

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 6/13

y=2−
3
2

x+
3
2

x2

which is the result we obtained in Example 1.

In general, if we have n sample points (x i , y i) , i=1,2,… , n we form the n polynomials

Lk (x)=∏
i≠k

x− xi

xk− xi

(2)

for k=1,2,… , n , where the P symbol signifies the product of the n−1 terms indicated. The
interpolating polynomial is then

y=p (x)=∑
k =1

n

y k Lk (x) (3)

Lagrange polynomials are very useful analytically since they can be written down by inspection
without solving any equations. They also have good numerical properties. A Scilab program to
interpolate n samples using the Lagrange method appears in Appendix 2 as
interpLagrange(). It's important to remember that there is a unique polynomial of order
n−1 which interpolates a given n points. Whatever method we use to compute this must
produce the same polynomial (to within our numerical limitations).

4.3 Newton polynomials

Newton polynomials are yet another way to obtain the n−1 order polynomial that interpolates a
given n points. Suppose we have a single sample (x1 , y1) . The zeroth-order polynomial (a
constant function) passing through this point is

p0(x)=c1

where c1= y1 . Now suppose we have an additional point (x2 , y2) . The polynomial that
interpolates these two points will now be first order. Newton's idea was to write it in the form

p1(x)=c1+c2(x−x1)

because this guarantees that p1(x1)=c1= p0(x1)= y1 , so our coefficient c1 is unchanged. We
need only calculate a single “new” coefficient c2 from

p1(x2)= y2=c1+c2(x2−x1)

This gives us

c2=
y2−c1

x2−x1

=
y2− y1

x2−x1

so

p1(x)= y1+
y2− y1

x2− x1

(x−x1)

Notice that this looks somewhat like f (x)= f (x1)+ f
′
(x1)(x−x1) where f

′
(x1) is

approximated by “change in y over change in x.” That is it has the form of a discrete Taylor

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 7/13

series.

Now suppose we add a third point (x3 , y3) . Our interpolating polynomial will now need to be
quadratic, but we want to write it in a way that “preserves” the fit we've already obtained for the
first two points. Therefore we write

p2(x)=c1+c2(x−x1)+c3(x−x1)(x−x2)

which guarantees that p2(x1)=c1= y1=p0(x1) and p2(x2)=c1+c2(x2−x1)= y2=p1(x2) . The
single new coefficient c3 is obtained from

p2(x3)= y3=c1+c2(x3−x1)+c3(x3−x1)(x3− x2)

so that

c3=
y3−c1−c2(x3−x1)

(x3− x1)(x3−x2)
=

y3− y1

x3−x1

−c2

x3−x2

=

y3− y1

x3− x1

−
y2− y1

x2−x1

x3−x2

The coefficient c3 has a form that suggests “difference in the derivative of y over difference in
x” – the form of a second derivative. Our interpolating polynomial

p2(x)= y1+
y2− y1

x2−x1

(x− x1)+

y3− y1

x3− x1

−
y 2− y1

x2−x1

x3−x2

(x−x1)(x−x2)

is roughly analogous to a second-order Taylor series

f (x)= f (x1)+ f
′
(x1)(x− x1)+

1
2

f
″
(x1)(x−x1)

2

We might think of p2(x) as a second-order discrete Taylor series.

If we now add a fourth data point (x4 , y 4) we will need a third-order interpolating polynomial
p3(x) which we write as

p3(x)=c1+c2(x− x1)+c3(x− x1)(x− x2)+c4(x− x1)(x−x2)(x− x3)

As before all the coefficients except the “new one” will be unchanged, so we need only calculate
the single new coefficient c4 .

Suppose instead we skip calculating the polynomials p0(x) , p1(x) , p2(x) and want to calculate
p3(x) directly from the four data points. The four coefficients are determined by the conditions

(
1 0 0 0
1 (x2−x1) 0 0
1 (x3−x1) (x3−x1)(x3−x2) 0
1 (x4−x1) (x4−x1)(x4−x2) (x4−x1)(x4−x2)(x4− x3)

)(
c1

c2

c3

c4
)=(

y1

y2

y3

y4
) (4)

The matrix is lower-triangular, so we can solve it using forward substitution. However, if we
solve it using Gauss-Jordan elimination an interesting pattern emerges.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 8/13

The augmented matrix is

(
1 0 0 0 y1

1 (x2−x1) 0 0 y2

1 (x3−x1) (x3−x1)(x3−x2) 0 y3

1 (x4−x1) (x4−x1)(x4−x2) (x4−x1)(x4−x2)(x4− x3) y4
)

Subtracting the row 1 from rows 2, 3 and 4

(
1 0 0 0 y1

0 (x2−x1) 0 0 y2− y1

0 (x3− x1) (x3− x1)(x3−x2) 0 y3− y1

0 (x4−x1) (x4− x1)(x4− x2) (x4− x1)(x4− x2)(x4−x3) y4− y1
)

Normalizing rows 2, 3 and 4 by the element in the 2nd column

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2−x1

0 1 (x3− x2) 0
y3− y1

x3− x1

0 1 (x4− x2) (x4−x2)(x4−x3)
y4− y1

x4−x1

)
Note the cancellation of the term (x3−x1) in row 3 and (x4− x1) in row 4. Now substract row 2
from rows 3 and 4.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 3: Monomial (thick green line), Lagrange (medium blue line) and Newton (thin dashed red line)
polynomials. At left N=11 point (hece 10 th order polynomials). Agreement is good. At right N=13 points (12 th

order polynomials). The monomial polynomial fails to interpolate the data. The y data values were chosen
randomly. The x values are 0,1,2,...,N-1.

Lecture 14: Interpolation I 9/13

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2− x1

0 0 (x3− x2) 0
y3− y1

x3− x1

−
y2− y1

x2−x1

0 0 (x4− x2) (x4−x2)(x4−x3)
y4− y1

x4−x1

−
y2− y1

x2−x1

)
Normalizing rows 3 and 4 by the element in the 3rd column

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2− x1

0 0 1 0

y3− y1

x3− x1

−
y2− y1

x2−x1

x3−x2

0 0 1 (x4− x3)

y4− y1

x4−x1

−
y2− y1

x2−x1

x4−x2

)
Note the cancellation in row 4. Subtract row 3 from row 4

(
1 0 0 0 y1

0 1 0 0
y2− y1

x2−x1

0 0 1 0

y3− y1

x3− x1

−
y2− y1

x2−x1

x3−x2

0 0 0 (x4− x3)

y4− y1

x4−x1

−
y2− y1

x2−x1

x4−x2

−

y3− y1

x3− x1

−
y 2− y1

x2−x1

x3−x2

)
Normalize row 4 by its element in column 4

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 10/13

(
1 0 0 0 y1

0 1 0 0
y 2− y1

x2−x1

0 0 1 0

y3− y1

x3−x1

−
y2− y1

x2− x1

x3− x2

0 0 0 1

y4− y1

x4− x1

−
y2− y1

x2−x1

x4−x2

−

y3− y1

x3−x1

−
y2− y1

x2− x1

x3− x2

x4−x3

)
The 5th column now contains the coefficients of the Newton polynomial. Following through these
steps we arrive at the very compact algorithm for calculating the Newton coefficients.

Calculating Newton coefficients

 c = y(:); //c is a column vector of the y values
 for i=1:n-1
 for j=i+1:n
 c(j) = (c(j)-c(i))/(x(j)-x(i));
 end
 end

This is used in the Scilab program interpNewton which appears in Appendix 2. This
interpolates n sample points using the Newton method.

4.4 Numerical considerations and polynomial “wiggle”

In principle, for a given set of data the monomial, Lagrange and Newton interpolating
polynomials are identical. They are merely expressed in different “formats.” However,
numerically the monomial polynomial method suffers from round-off error more than the other
two methods. This is illustrated in Fig. 3. In these examples we see that for higher than about a
10th order polynomial the monomial basis fails to accurately interpolate the data. The problem is
that the Vandermonde matrix in (1) tends to become nearly singular for large n. For this reason it
is not recommended for use except for low-order problems, if at all.

The Lagrange and Newton polynomials are both quite stable numerically. The form of the
Newton algorithm allows it to be implemented with fewer floating-point operations, and so it
tend to be faster, especially at high order. Numerically, therefore, Newton polynomials are
arguably the best choice for polynomial interpolation.

Even without round-off error, high-order polynomials tend to produce unsatisfactory
interpolation. The problem is “polynomial wiggle.” This can be seen in the right graph of Fig. 3.
Near the “middle” x values the interpolation seems reasonable, but at the left and right extremes
it oscillates between very large y values – much larger than any of the sample y values. Very
slight changes in the y values of the sample points can cause very large changes in this wiggle
effect. Although we are guaranteed to be able to find an (n-1)th order polynomial passing through
n samples, there is no guarantee that it will be “smooth.” In fact for large n it will typically
display these large oscillations. We consider alternative interpolation methods in the next lecture.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 11/13

5 Appendix 1 – Lagrange polynomials for equally spaced points
Suppose we have n sample points (x1 , y1) ,(x2 , y2) ,… ,(xn , yn) with uniformly spaced x values
given by x i= x1+(i−1)h . Define

t=
x−x1

h

so that

x= x1+h t

Written at (t i , y i) samples, our data have the form

(0 , y1) ,(1 , y2) ,… ,(n−1 , yn)

Suppose we fit a polynomial y= p(t) through these data. Then the polynomial

y=q (x)=p (t)= p(x− x1

h)
interpolates the (x i , y i) samples. We limit consideration to the Lagrange basis, as it is the most
useful theoretically. Here we list the p (t) polynomials of orders 0,1,2,3,4 which interpolate
n=1,2,3,4,5 sample points. These can easily be derived from formulas (2) and (3).

For n=1

p0(t)= y1

For n=2

p1(t)= y2 t− y1(t−1)

For n=3

p2(t)=
1
2

y3t (t−1)− y2 t(t−2)+
1
2

y1(t−1)(t−2)

For n=4

p3(t)=
1
6

y4 t (t−1)(t−2)−
1
2

y3 t (t−1)(t−3)+
1
2

y2 t(t−2)(t−3)−
1
6

y1(t−1)(t−2)(t−3)

For n=5

p4(t)=
1

24
y5 t(t−1)(t−2)(t−3)−

1
6

y4 t(t−1)(t−2)(t−4)+
1
4

y3t (t−1)(t−3)(t−4)

 −
1
6

y2 t(t−2)(t−3)(t−4)+
1

24
y1(t−1)(t−2)(t−3)(t−4)

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 12/13

6 Appendix 2 – Scilab code

6.1 Monomial-basis polynomial interpolation
0001 //
0002 // interpMonomial.sci
0003 // interpLagrangeCoeff.sci
0004 // 2014-06-25, Scott Hudson, for pedagogic purposes only
0005 // Given n samples x(i),y(i), in the column vectors x,y
0006 // calculate the coefficients c(i) of the (n-1) order
0007 // monomial interpolating polynomial and evaluate at points xp.
0008 //
0009 function yp = interpMonomial(x, y, xp)
0010 n = length(x); //x and y must be column vectors of length n
0011 A = ones(x); //build up the Vandermonde matrix A
0012 for k=1:n-1
0013 A = [A,x.^k]; //each column is a power of the column vector x
0014 end
0015 c = A\y; //solve for coefficients
0016 yp = ones(xp)*c(1); //evaluate polynomial at desired points
0017 for k=2:n
0018 yp = yp+c(k)*xp.^(k-1);
0019 end
0020 endfunction

6.2 Lagrange-basis polynomial interpolation
0001 //
0002 // interpLagrange.sci
0003 // 2014-06-25, Scott Hudson, for pedagogic purposes only
0004 // Given n samples x(i),y(i), in the column vectors x,y
0005 // evaluate the Lagrange interpolating polynomial at points xp.
0006 //
0007 function yp = interpLagrange(x, y, xp)
0008 n = length(x);
0009 yp = zeros(xp);
0010 for k=1:n //form Lagrange polynomial L_k
0011 L = 1;
0012 for i=1:n
0013 if (i~=k)
0014 L = L.*(xp-x(i))/(x(k)-x(i));
0015 end
0016 end
0017 yp = yp+y(k)*L;
0018 end
0019 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 14: Interpolation I 13/13

6.3 Newton-basis polynomial interpolation
0001 //
0002 // interpNewton.sci
0003 // 2014-06-25, Scott Hudson, for pedagogic purposes
0004 // Given n-dimensional vectors x and y, compute the coefficients
0005 // c(1), c(2), ..., c(n) of the Newton interpolating polynomial y=p(x)
0006 // and evaluate at points xp.
0007 //
0008 function yp = interpNewton(x, y, xp)
0009 n = length(y);
0010 c = y(:);
0011 for i=1:n-1
0012 for j=i+1:n
0013 c(j) = (c(j)-c(i))/(x(j)-x(i));
0014 end
0015 end
0016 yp = ones(xp)*c(1);
0017 u = ones(xp);
0018 for i=2:n
0019 u = u.*(xp-x(i-1));
0020 yp = yp+c(i)*u;
0021 end
0022 endfunction

6.4 Coefficients of Newton polynomial
0001 //
0002 // interpNewtonCoeffs.sci
0003 // 2014-06-25, Scott Hudson, for pedagogic purposes only
0004 // Given n samples x(i),y(i), in the column vectors x,y
0005 // calculate the coefficients c(i) of the
0006 // (n-1) order interpolating Newton polynomial
0007 //
0008 function c = interpNewtonCoeffs(x, y)
0009 n = length(y);
0010 c = y(:);
0011 for j=2:n
0012 for i=n:-1:j
0013 c(i) = (c(i)-c(i-1))/(x(i)-x(i-j+1));
0014 end
0015 end
0016 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

	1 Introduction
	2 Nearest neighbor or “staircase” interpolation
	3 Linear interpolation
	4 Polynomial interpolation
	4.1 Monomial basis
	4.2 Lagrange polynomials
	4.3 Newton polynomials
	4.4 Numerical considerations and polynomial “wiggle”

	5 Appendix 1 – Lagrange polynomials for equally spaced points
	6 Appendix 2 – Scilab code
	6.1 Monomial-basis polynomial interpolation
	6.2 Lagrange-basis polynomial interpolation
	6.3 Newton-basis polynomial interpolation
	6.4 Coefficients of Newton polynomial

