
Lecture 13
Nonlinear systems of equations

1 Introduction
We have investigated the solution of one nonlinear equation in one unknown: f (x )=0 . What
about multiple nonlinear equations in multiple unknowns? To get started, consider one equation
in two unknowns

f (x , y )=0

To be specific, let's take

f (x , y )=x2
+ y2

−4=0

Although we can solve this for y

y=±√4− x2

this does not give us a unique solution (x , y ) . Rather it defines y as a (two valued) function of x.
In general f (x , y )=0  defines a contour in the x,y plane (Fig. 1). With two unknowns we need
two equations to define a solution. Suppose our second equation is

g ( x , y)= y−sin (x)=0

This also defines y as a function of x

y=sin( x)

and a contour in the  x,y plane. An intersection of those contours (Fig. 1) is the solution of the
system of equations

f (x , y )=0
g (x , y )=0

(1)

In general one equation in n unknowns defines a “surface” of dimension n−1 . Two equations
define a “surface” of dimension n−2 , and k equations define a “surface” of dimension n−k . A
point is a “surface” of dimension 0, and to define a point we need to have  n equations in  n
unknowns.

A  graphical  approach  to  root  finding  gets  progressively  more  difficult  as  the  number  of
dimensions grows. Beyond two dimensions it is rarely an option. 

2 Notation
For a general system of n equations in n unknowns it's not convenient to use different letters x,y,z
for  the  unknowns  or  f,g,h for  the  functions.  A better  notation  is  to  use  indices  so  that  the
unknown variables are represented as x i :1≤i≤n . Our system of 2 equations (1) would then be
written as

f 1(x1 , x2)=0
f 2(x1 , x2)=0
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A system of n equations would have the form

f 1(x1 , x2 ,… , xn)=0
f 2(x1 , x2 ,… , xn)=0

⋮
f n(x1 , x2 ,… , xn)=0

(2)

Now, we can treat the arrays of unknowns x1 , x2 ,… , xn  and functions f 1 , f 2 ,… , f n  as vectors
to arrive at the compact notation

f (x)=0 (3)

The notation in (3) is simply a shorthand representation for the system of (2), but when written
using vectors it displays the same form as the scalar root-finding problem f (x )=0 .

3 Challenges
In general solving a system of the form (3) is a difficult problem. To quote the classic work
Numerical Recipes in C [1,Section 9.6]

There are  no good,  general  methods  for  solving systems of  more  than one nonlinear
equation. Furthermore, it is not hard to see why (very likely) there never will be any good,
general methods. 

The single largest problem is that in two or more dimensions we loose the concept of bracketing
a root. Going back to the notation (1), suppose the point a is (xa , ya)  and the point b is (xb , yb)

and 
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Fig.  1:  Intersections  of  the f(x,y)=0 and g(x,y)=0 contours  define  the solutions of  the
system of two equations in two unknowns.
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f (xa , ya) f (xb , yb)<0
g (xa , ya) g ( xb , yb)<0

Provided f and  g are continuous along a path connecting  a and  b, on that path there will be a
point c where f (xc , yc)=0 . Likewise there will be a point d where g ( xd , yd)=0 . However we
have no way of knowing if these two points will coincide, as they must at a solution of (1). In
fact, based on Fig. 2 we can see that it is quite unlikely that they will. Thus there is no procedure
analogous to bisection that can guarantee we find a root with any given precision. 

Without bracketing and bisection methods we are left with the possibility of implementing some
form of root polishing. Recall that in one-dimension these methods were not guaranteed to find a
solution, even if one or more exists. Typically they need to start reasonably close to a solution to
converge. 

The  one-dimensional  root-polishing  methods  we  investigated  were:  fixed-point  iteration,
Newton's method and the secant method. We will develop multidimensional versions of those
below.

4 Fixed-point iteration
Consider the following equations

0=f (r)
0=A f (r )

r=r+A f (r )=g (r)

where r is an n-dimensional column vector that forms a solution of our problem and f is an n-
dimensional column-vector function. The first equation is simply a statement of our root finding
problem. In the second equation we have multiplied both sides by an n-by-n matrix A. In the last
equation we have added r to both sides and defined the right-hand side as the function g(r) . 
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Fig.  2: Continuous function  f ( x , y) , g (x , y)  both change signs between point  a and
point b, but f ( x , y)=0  and g ( x , y)=0  are unlikely to occur at the same point.
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Let's now write

x=g (x) (4)

This has solution x=r . Following the one-dimensional algorithm we expect that the sequence
of vectors xk  where

xk +1=g(xk) (5)

might converge to r under the right conditions. Note that the notation xk  refers to the kth vector
in a sequence of vectors and not the kth component of the vector x, which would be written xk . 

In terms of components (4) gives us n equations

x i=g i(x1 , x2 , x3 ,… , xn)  , i=1,2,3,… , n

Let's write

x i=ri+ei

where e i=x i−ri  is the error in the ith component of x. Supposing that all the e i  values are small
enough that first-order Taylor series are accurate we write (5) as

r i+e i=g i(r)+
∂ g i

∂ x1

e1+
∂ g i

∂ x2

e2+⋯+
∂ g i

∂ xn

en (6)

or

e i=∑
j=1

n ∂ g i

∂ x j

e j (7)

since r i=g i(r) . Now, define the n-by-n matrix J to have the elements

J ij=
∂ g i

∂ x j

This  is  called  the  Jacobian matrix of  the  vector  function  g(x) .  We also define  the  n-by-1
column vector e to have elements e i . Then (7) can be written

ek+1=Jek (8)

where, again, ek  is the kth vector in the sequence of error vectors, and is not to be confused with
ek  which is the  kth element in a particular vector. 

Intuitively the sequence (8) will converge provided  ‖J ek‖≤α‖ek ‖  for some  0≤α<1 . That is,
the norm of the error vector decreases by a fixed factor at each iteration so that

‖ek‖≤α
k ‖e0‖→0  as k →∞

In principle it is always possible to find a matrix A so that (8) converges. However it's a difficult
problem since A has n2  components, and it is rarely practical to do so. Instead, we might try to
manipulate our system of equations into the form (4), in various ways until we find one that
converges.
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Example 1: Consider the system

f ( x , y)=x2
+ y2

−4=0
g ( x , y)= y−sin (x)=0

Let's write this in the iterative form

x=x+x2
+ y2

−4
y= y+ y−sin( x)

From  Fig. 1 we see that  x=2 , y=1  is near a root. Starting at this  point our
iteration gives us

k x y
1 3 1.85888
2 11.455435 4.6138744
3 159.97026 8.9794083

which is clearly not converging. However writing

x=√4− y2

y=sin (x)

we obtain

k x y
1 1.7320508 0.9870266
2 1.7394765 0.9858072
3 1.7401679 0.9856909
⋮ ⋮ ⋮
7 1.7402407 0.9856786

which does converge.

5 The Newton-Raphson method
In one-dimension, the idea behind Newton's method is to approximate a function by its tangent
line

f (xk +1)= f ( xk )+ f
′
( xk)(xk +1− xk )=0

and solve for the root of that line to get

xk +1=xk−
f (xk )

f
′
( xk )

In the n-dimensional case, if we know f i(x ) , for a small change to x we can approximate the
change in the function by a first-order Taylor series

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 13: Nonlinear systems of equations 6/11

f i(x1+u1, x2+u2,… , xn+un)≈ f i(x)+
∂ f i

∂ x1

u1+
∂ f i

∂ x2

u2+⋯+
∂ f i

∂ xn

un

where the derivatives are evaluated at  x and u is the small change in x. Setting this expression
equal to zero we have

∂ f i

∂ x1

u1+
∂ f i

∂ x2

u2+⋯+
∂ f i

∂ xn

un=− f i (x)

Doing this for i=1,2,… , n  we get the system of equations

∂ f 1

∂ x1

u1+
∂ f 1

∂ x2

u2+⋯+
∂ f 1

∂ xn

un=− f 1(x)

∂ f 2

∂ x1

u1+
∂ f 2

∂ x2

u2+⋯+
∂ f 2

∂ xn

un=− f 2(x)

⋮
∂ f n

∂ x1

u1+
∂ f n

∂ x2

u2+⋯+
∂ f n

∂ xn

un=− f n(x)

Defining the Jacobian matrix J to have elements

J ij=
∂ f i

∂ x j

we then have the linear system

J u=−f

Solving  this  we  update  x and  repeat  until  convergence.  As  in  all  root-polishing  methods,
convergence involves some guesswork. Typically we assume convergence when ‖u‖  is smaller
than some tolerance. The result is the Newton-Raphson method.

Newton-Raphson method

    Given xk  calculate

    f k=f (xk)  and Jk  with elements J ij=
∂ f i

∂ x j

 evaluated at xk

    solve for uk=−Jk
−1 f k

    update xk +1=xk+uk

    repeat until ‖uk‖  is “small enough”

Let's see how this works on our previous example problem.

Example 2: We wish to solve f (x)=0  where

f (x)=( x1
2
+ x2

2
−4

x2−sin( x1))
The Jacobian matrix is
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J=( 2 x1 2 x2

−cos (x1) 1 )
The iteration

x ←x−J−1 f

starting at x=2 , y=1  produces

-->deff('y=f(x)','y=[x(1)^2+x(2)^2-4;x(2)-sin(x(1))]');

-->deff('y=J(x)','y=[2*x(1),2*x(2);-cos(x(1)),1]');

-->x = [2;1];

-->x = x-J(x)\f(x)

 x  =
 
    1.7415812  
    1.0168376  
 
-->x = x-J(x)\f(x)
 x  =
 
    1.7405501  
    0.9856269  
 
-->x = x-J(x)\f(x)
 x  =
 
    1.7402407  
    0.9856787 

When started “near” a root, the Newton-Raphson method converges quadratically. Like all root-
polishing methods there is no guarantee that it  will converge, even if a root exists.  A Scilab
implementation  of  the  Newton-Raphson  method  is  given  in  the  Appendix  as
rootNewtonRaphson. 

6 Broyden's method
The Newton-Raphson method requires the calculation of the Jacobian matrix, n derivatives of n
functions, at each iteration. It might not be possible to calculate this analytically, or it might not
be convenient to do so. In the one-dimensional problem we avoided calculating derivatives by
approximating the derivative by

f
′
( xk)≈

f ( xk+1)− f (xk )

x k+1−xk

This  led  to  the  secant  method.  A  similar  approach  in  the  multidimensional  case  leads  to
Broyden's  method.  We approximate  the Jacobian  J by a matrix  B and otherwise follow the
Newton-Raphson method. Assume we start with some  xk ,  f k=f (xk)  and some estimate  B k

for the Jacobian. We solve for

EE 221 Numerical Computing Scott Hudson 2015-08-18



Lecture 13: Nonlinear systems of equations 8/11

uk=−B k
−1 f k

update our root estimate

xk +1=xk+uk

calculate

f k+1=f (xk +1)

and update our Jacobian estimate using Broyden's formula

Bk +1=Bk+f k +1

uk
T

‖ uk‖
2 .

The motivation for Broyden's formula is that we want to have

B k+1 uk=f k+1−f k

This is analogous to the one-dimensional formula  f
′
Δx=Δ f  where the Jacobian estimate  B

takes the place of the function derivative. Since

uk
T

‖ uk‖
2 uk=1

we have

B k+1 uk=Bk uk+f k+1=f k +1−f k

In summary:

Broyden's method

    Given xk , f k=f (xk)  and B k

    solve for uk=−B k
−1 f k

    update xk +1=xk+uk

    calculate f k+1=f (xk +1)

    update Bk+1=Bk+f k +1

uk
T

‖uk ‖
2 .

    repeat until ‖uk‖  is “small enough”

If we have no information to guide us in forming the initial estimate B0  we can take it to be the
identify matrix. Broyden's update formula will usually cause B k  to quickly form a good estimate
of Jk . A Scilab implement appears in the Appendix as rootBroyden.

The fsolve command (Scilab)
We have already learned how to use the  fsolve command to find roots of one-dimensional
functions. Precisely the same syntax applies in the case of an n-dimensional function

r = fsolve(x0,f);
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The only difference is that r, x0 and f are now n-dimensional. If the Jacobian can be explicitly
calculated that can be added as an additional argument

r = fsolve(x0,f,J);

and fsolve will utilize that for faster convergence. 

7 References
1. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical Recipes

in C, Cambridge, 1988, ISBN: 0-521-35465-X.
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8 Appendix – Scilab code

8.1 Newton-Raphson method
0001  //////////////////////////////////////////////////////////////////////
0002  // rootNewtonRaphson.sci
0003  // 2014-06-04, Scott Hudson, for pedagogic purposes 
0004  // Implements Newton-Raphson method for finding a root f(x) = 0
0005  // where f and x are n-by-1 vectors.
0006  // Requires two functions: y=f(x) and y=J(x) where J(x) is the n-by-n
0007  // Jacobian of f(x). Search starts at x0. Root is returned as r,
0008  // niter is number of iterations performed. Termination when change
0009  // in x is less than tol or MAX_ITERS exceeded. 
0010  //////////////////////////////////////////////////////////////////////
0011  function [r, nIters]=rootNewtonRaphson(x0, f, J, tol)
0012    MAX_ITERS = 40; //give up after this many iterations
0013    nIters = 1; //1st iteration
0014    r = x0-J(x0)\f(x0); //Newton's formula for next root estimate
0015    while (max(abs(r-x0))>tol) & (nIters<=MAX_ITERS)
0016      nIters = nIters+1; //keep track of # of iterations
0017      x0 = r; //current root estimate is last output of formula
0018      r = x0-J(x0)\f(x0); //Newton's formula for next root estimate
0019    end
0020  endfunction

8.2 Broyden's method
0001  //////////////////////////////////////////////////////////////////////
0002  // rootBroyden.sci
0003  // 2014-06-12, Scott Hudson, for pedagogic purposes
0004  // Implements Broyden's method for finding a root of f(x)=0
0005  // where f and x are n-by-1 vectors. x0 is initial guess for root
0006  // and tol is termination tolerance for change in x.
0007  //////////////////////////////////////////////////////////////////////
0008  function [r, nIters]=rootBroyden(x0, f, tol)
0009    MAX_ITERS = 40; //give up after this many iterations
0010    xk = x0;
0011    n = length(xk);
0012    fk = f(xk);
0013    Bk = eye(n,n);
0014    uk = -Bk\fk;
0015    nIters = 0;
0016    while (max(abs(uk))>tol) & (nIters<=MAX_ITERS)
0017      xk = xk+uk;
0018      fk = f(xk);
0019      Bk = Bk+fk*(uk')/(uk'*uk);
0020      uk = -Bk\fk;
0021      nIters = nIters+1;
0022    end
0023    r = xk+uk;
0024  endfunction
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9 Appendix – Matlab code

9.1 Newton-Raphson method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% rootNewtonRaphson.m
%% 2014-06-04, Scott Hudson, for pedagogic purposes 
%% Implements Newton-Raphson method for finding a root f(x) = 0
%% where f and x are n-by-1 vectors.
%% Requires two functions: y=f(x) and y=J(x) where J(x) is the n-by-n
%% Jacobian of f(x). Search starts at x0. Root is returned as r,
%% niter is number of iterations performed. Termination when change
%% in x is less than tol or MAX_ITERS exceeded. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [r,nIters] = rootNewtonRaphson(x0,f,J,tol)
  MAX_ITERS = 40; %%give up after this many iterations
  nIters = 1; %%1st iteration
  r = x0-J(x0)\f(x0); %%Newton's formula for next root estimate
  while (max(abs(r-x0))>tol) && (nIters<=MAX_ITERS)
    nIters = nIters+1; %%keep track of # of iterations
    x0 = r; %%current root estimate is last output of formula
    r = x0-J(x0)\f(x0); %%Newton's formula for next root estimate
  end
end

9.2 Broyden's method
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% rootBroyden.m
%% 2014-06-12, Scott Hudson, for pedagogic purposes
%% Implements Broyden's method for finding a root of f(x)=0
%% where f and x are n-by-1 vectors. x0 is initial guess for root
%% and tol is termination tolerance for change in x.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [r,nIters] = rootBroyden(x0,f,tol)
  MAX_ITERS = 40; %%give up after this many iterations
  xk = x0;
  n = length(xk);
  fk = f(xk);
  Bk = eye(n,n);
  uk = -Bk\fk;
  nIters = 0;
  while (max(abs(uk))>tol) && (nIters<=MAX_ITERS)
    xk = xk+uk;
    fk = f(xk);
    Bk = Bk+fk*(uk')/(uk'*uk);
    uk = -Bk\fk;
    nIters = nIters+1;
  end
  r = xk+uk;
end
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