
Lecture 13
Nonlinear systems of equations

1 Introduction
We have investigated the solution of one nonlinear equation in one unknown: f (x)=0 . What
about multiple nonlinear equations in multiple unknowns? To get started, consider one equation
in two unknowns

f (x , y)=0

To be specific, let's take

f (x , y)=x2
+ y2

−4=0

Although we can solve this for y

y=±√4− x2

this does not give us a unique solution (x , y) . Rather it defines y as a (two valued) function of x.
In general f (x , y)=0 defines a contour in the x,y plane (Fig. 1). With two unknowns we need
two equations to define a solution. Suppose our second equation is

g (x , y)= y−sin (x)=0

This also defines y as a function of x

y=sin(x)

and a contour in the x,y plane. An intersection of those contours (Fig. 1) is the solution of the
system of equations

f (x , y)=0
g (x , y)=0

(1)

In general one equation in n unknowns defines a “surface” of dimension n−1 . Two equations
define a “surface” of dimension n−2 , and k equations define a “surface” of dimension n−k . A
point is a “surface” of dimension 0, and to define a point we need to have n equations in n
unknowns.

A graphical approach to root finding gets progressively more difficult as the number of
dimensions grows. Beyond two dimensions it is rarely an option.

2 Notation
For a general system of n equations in n unknowns it's not convenient to use different letters x,y,z
for the unknowns or f,g,h for the functions. A better notation is to use indices so that the
unknown variables are represented as x i :1≤i≤n . Our system of 2 equations (1) would then be
written as

f 1(x1 , x2)=0
f 2(x1 , x2)=0

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 2/11

A system of n equations would have the form

f 1(x1 , x2 ,… , xn)=0
f 2(x1 , x2 ,… , xn)=0

⋮
f n(x1 , x2 ,… , xn)=0

(2)

Now, we can treat the arrays of unknowns x1 , x2 ,… , xn and functions f 1 , f 2 ,… , f n as vectors
to arrive at the compact notation

f (x)=0 (3)

The notation in (3) is simply a shorthand representation for the system of (2), but when written
using vectors it displays the same form as the scalar root-finding problem f (x)=0 .

3 Challenges
In general solving a system of the form (3) is a difficult problem. To quote the classic work
Numerical Recipes in C [1,Section 9.6]

There are no good, general methods for solving systems of more than one nonlinear
equation. Furthermore, it is not hard to see why (very likely) there never will be any good,
general methods.

The single largest problem is that in two or more dimensions we loose the concept of bracketing
a root. Going back to the notation (1), suppose the point a is (xa , ya) and the point b is (xb , yb)

and

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1: Intersections of the f(x,y)=0 and g(x,y)=0 contours define the solutions of the
system of two equations in two unknowns.

Lecture 13: Nonlinear systems of equations 3/11

f (xa , ya) f (xb , yb)<0
g (xa , ya) g (xb , yb)<0

Provided f and g are continuous along a path connecting a and b, on that path there will be a
point c where f (xc , yc)=0 . Likewise there will be a point d where g (xd , yd)=0 . However we
have no way of knowing if these two points will coincide, as they must at a solution of (1). In
fact, based on Fig. 2 we can see that it is quite unlikely that they will. Thus there is no procedure
analogous to bisection that can guarantee we find a root with any given precision.

Without bracketing and bisection methods we are left with the possibility of implementing some
form of root polishing. Recall that in one-dimension these methods were not guaranteed to find a
solution, even if one or more exists. Typically they need to start reasonably close to a solution to
converge.

The one-dimensional root-polishing methods we investigated were: fixed-point iteration,
Newton's method and the secant method. We will develop multidimensional versions of those
below.

4 Fixed-point iteration
Consider the following equations

0=f (r)
0=A f (r)

r=r+A f (r)=g (r)

where r is an n-dimensional column vector that forms a solution of our problem and f is an n-
dimensional column-vector function. The first equation is simply a statement of our root finding
problem. In the second equation we have multiplied both sides by an n-by-n matrix A. In the last
equation we have added r to both sides and defined the right-hand side as the function g(r) .

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 2: Continuous function f (x , y) , g (x , y) both change signs between point a and
point b, but f (x , y)=0 and g (x , y)=0 are unlikely to occur at the same point.

Lecture 13: Nonlinear systems of equations 4/11

Let's now write

x=g (x) (4)

This has solution x=r . Following the one-dimensional algorithm we expect that the sequence
of vectors xk where

xk +1=g(xk) (5)

might converge to r under the right conditions. Note that the notation xk refers to the kth vector
in a sequence of vectors and not the kth component of the vector x, which would be written xk .

In terms of components (4) gives us n equations

x i=g i(x1 , x2 , x3 ,… , xn) , i=1,2,3,… , n

Let's write

x i=ri+ei

where e i=x i−ri is the error in the ith component of x. Supposing that all the e i values are small
enough that first-order Taylor series are accurate we write (5) as

r i+e i=g i(r)+
∂ g i

∂ x1

e1+
∂ g i

∂ x2

e2+⋯+
∂ g i

∂ xn

en (6)

or

e i=∑
j=1

n ∂ g i

∂ x j

e j (7)

since r i=g i(r) . Now, define the n-by-n matrix J to have the elements

J ij=
∂ g i

∂ x j

This is called the Jacobian matrix of the vector function g(x) . We also define the n-by-1
column vector e to have elements e i . Then (7) can be written

ek+1=Jek (8)

where, again, ek is the kth vector in the sequence of error vectors, and is not to be confused with
ek which is the kth element in a particular vector.

Intuitively the sequence (8) will converge provided ‖J ek‖≤α‖ek ‖ for some 0≤α<1 . That is,
the norm of the error vector decreases by a fixed factor at each iteration so that

‖ek‖≤α
k ‖e0‖→0 as k →∞

In principle it is always possible to find a matrix A so that (8) converges. However it's a difficult
problem since A has n2 components, and it is rarely practical to do so. Instead, we might try to
manipulate our system of equations into the form (4), in various ways until we find one that
converges.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 5/11

Example 1: Consider the system

f (x , y)=x2
+ y2

−4=0
g (x , y)= y−sin (x)=0

Let's write this in the iterative form

x=x+x2
+ y2

−4
y= y+ y−sin(x)

From Fig. 1 we see that x=2 , y=1 is near a root. Starting at this point our
iteration gives us

k x y
1 3 1.85888
2 11.455435 4.6138744
3 159.97026 8.9794083

which is clearly not converging. However writing

x=√4− y2

y=sin (x)

we obtain

k x y
1 1.7320508 0.9870266
2 1.7394765 0.9858072
3 1.7401679 0.9856909
⋮ ⋮ ⋮
7 1.7402407 0.9856786

which does converge.

5 The Newton-Raphson method
In one-dimension, the idea behind Newton's method is to approximate a function by its tangent
line

f (xk +1)= f (xk)+ f
′
(xk)(xk +1− xk)=0

and solve for the root of that line to get

xk +1=xk−
f (xk)

f
′
(xk)

In the n-dimensional case, if we know f i(x) , for a small change to x we can approximate the
change in the function by a first-order Taylor series

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 6/11

f i(x1+u1, x2+u2,… , xn+un)≈ f i(x)+
∂ f i

∂ x1

u1+
∂ f i

∂ x2

u2+⋯+
∂ f i

∂ xn

un

where the derivatives are evaluated at x and u is the small change in x. Setting this expression
equal to zero we have

∂ f i

∂ x1

u1+
∂ f i

∂ x2

u2+⋯+
∂ f i

∂ xn

un=− f i (x)

Doing this for i=1,2,… , n we get the system of equations

∂ f 1

∂ x1

u1+
∂ f 1

∂ x2

u2+⋯+
∂ f 1

∂ xn

un=− f 1(x)

∂ f 2

∂ x1

u1+
∂ f 2

∂ x2

u2+⋯+
∂ f 2

∂ xn

un=− f 2(x)

⋮
∂ f n

∂ x1

u1+
∂ f n

∂ x2

u2+⋯+
∂ f n

∂ xn

un=− f n(x)

Defining the Jacobian matrix J to have elements

J ij=
∂ f i

∂ x j

we then have the linear system

J u=−f

Solving this we update x and repeat until convergence. As in all root-polishing methods,
convergence involves some guesswork. Typically we assume convergence when ‖u‖ is smaller
than some tolerance. The result is the Newton-Raphson method.

Newton-Raphson method

 Given xk calculate

 f k=f (xk) and Jk with elements J ij=
∂ f i

∂ x j

 evaluated at xk

 solve for uk=−Jk
−1 f k

 update xk +1=xk+uk

 repeat until ‖uk‖ is “small enough”

Let's see how this works on our previous example problem.

Example 2: We wish to solve f (x)=0 where

f (x)=(x1
2
+ x2

2
−4

x2−sin(x1))
The Jacobian matrix is

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 7/11

J=(2 x1 2 x2

−cos (x1) 1)
The iteration

x ←x−J−1 f

starting at x=2 , y=1 produces

-->deff('y=f(x)','y=[x(1)^2+x(2)^2-4;x(2)-sin(x(1))]');

-->deff('y=J(x)','y=[2*x(1),2*x(2);-cos(x(1)),1]');

-->x = [2;1];

-->x = x-J(x)\f(x)

 x =

 1.7415812
 1.0168376

-->x = x-J(x)\f(x)
 x =

 1.7405501
 0.9856269

-->x = x-J(x)\f(x)
 x =

 1.7402407
 0.9856787

When started “near” a root, the Newton-Raphson method converges quadratically. Like all root-
polishing methods there is no guarantee that it will converge, even if a root exists. A Scilab
implementation of the Newton-Raphson method is given in the Appendix as
rootNewtonRaphson.

6 Broyden's method
The Newton-Raphson method requires the calculation of the Jacobian matrix, n derivatives of n
functions, at each iteration. It might not be possible to calculate this analytically, or it might not
be convenient to do so. In the one-dimensional problem we avoided calculating derivatives by
approximating the derivative by

f
′
(xk)≈

f (xk+1)− f (xk)

x k+1−xk

This led to the secant method. A similar approach in the multidimensional case leads to
Broyden's method. We approximate the Jacobian J by a matrix B and otherwise follow the
Newton-Raphson method. Assume we start with some xk , f k=f (xk) and some estimate B k

for the Jacobian. We solve for

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 8/11

uk=−B k
−1 f k

update our root estimate

xk +1=xk+uk

calculate

f k+1=f (xk +1)

and update our Jacobian estimate using Broyden's formula

Bk +1=Bk+f k +1

uk
T

‖ uk‖
2 .

The motivation for Broyden's formula is that we want to have

B k+1 uk=f k+1−f k

This is analogous to the one-dimensional formula f
′
Δx=Δ f where the Jacobian estimate B

takes the place of the function derivative. Since

uk
T

‖ uk‖
2 uk=1

we have

B k+1 uk=Bk uk+f k+1=f k +1−f k

In summary:

Broyden's method

 Given xk , f k=f (xk) and B k

 solve for uk=−B k
−1 f k

 update xk +1=xk+uk

 calculate f k+1=f (xk +1)

 update Bk+1=Bk+f k +1

uk
T

‖uk ‖
2 .

 repeat until ‖uk‖ is “small enough”

If we have no information to guide us in forming the initial estimate B0 we can take it to be the
identify matrix. Broyden's update formula will usually cause B k to quickly form a good estimate
of Jk . A Scilab implement appears in the Appendix as rootBroyden.

The fsolve command (Scilab)
We have already learned how to use the fsolve command to find roots of one-dimensional
functions. Precisely the same syntax applies in the case of an n-dimensional function

r = fsolve(x0,f);

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 9/11

The only difference is that r, x0 and f are now n-dimensional. If the Jacobian can be explicitly
calculated that can be added as an additional argument

r = fsolve(x0,f,J);

and fsolve will utilize that for faster convergence.

7 References
1. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical Recipes

in C, Cambridge, 1988, ISBN: 0-521-35465-X.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 10/11

8 Appendix – Scilab code

8.1 Newton-Raphson method
0001 //
0002 // rootNewtonRaphson.sci
0003 // 2014-06-04, Scott Hudson, for pedagogic purposes
0004 // Implements Newton-Raphson method for finding a root f(x) = 0
0005 // where f and x are n-by-1 vectors.
0006 // Requires two functions: y=f(x) and y=J(x) where J(x) is the n-by-n
0007 // Jacobian of f(x). Search starts at x0. Root is returned as r,
0008 // niter is number of iterations performed. Termination when change
0009 // in x is less than tol or MAX_ITERS exceeded.
0010 //
0011 function [r, nIters]=rootNewtonRaphson(x0, f, J, tol)
0012 MAX_ITERS = 40; //give up after this many iterations
0013 nIters = 1; //1st iteration
0014 r = x0-J(x0)\f(x0); //Newton's formula for next root estimate
0015 while (max(abs(r-x0))>tol) & (nIters<=MAX_ITERS)
0016 nIters = nIters+1; //keep track of # of iterations
0017 x0 = r; //current root estimate is last output of formula
0018 r = x0-J(x0)\f(x0); //Newton's formula for next root estimate
0019 end
0020 endfunction

8.2 Broyden's method
0001 //
0002 // rootBroyden.sci
0003 // 2014-06-12, Scott Hudson, for pedagogic purposes
0004 // Implements Broyden's method for finding a root of f(x)=0
0005 // where f and x are n-by-1 vectors. x0 is initial guess for root
0006 // and tol is termination tolerance for change in x.
0007 //
0008 function [r, nIters]=rootBroyden(x0, f, tol)
0009 MAX_ITERS = 40; //give up after this many iterations
0010 xk = x0;
0011 n = length(xk);
0012 fk = f(xk);
0013 Bk = eye(n,n);
0014 uk = -Bk\fk;
0015 nIters = 0;
0016 while (max(abs(uk))>tol) & (nIters<=MAX_ITERS)
0017 xk = xk+uk;
0018 fk = f(xk);
0019 Bk = Bk+fk*(uk')/(uk'*uk);
0020 uk = -Bk\fk;
0021 nIters = nIters+1;
0022 end
0023 r = xk+uk;
0024 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 13: Nonlinear systems of equations 11/11

9 Appendix – Matlab code

9.1 Newton-Raphson method
%%
%% rootNewtonRaphson.m
%% 2014-06-04, Scott Hudson, for pedagogic purposes
%% Implements Newton-Raphson method for finding a root f(x) = 0
%% where f and x are n-by-1 vectors.
%% Requires two functions: y=f(x) and y=J(x) where J(x) is the n-by-n
%% Jacobian of f(x). Search starts at x0. Root is returned as r,
%% niter is number of iterations performed. Termination when change
%% in x is less than tol or MAX_ITERS exceeded.
%%
function [r,nIters] = rootNewtonRaphson(x0,f,J,tol)
 MAX_ITERS = 40; %%give up after this many iterations
 nIters = 1; %%1st iteration
 r = x0-J(x0)\f(x0); %%Newton's formula for next root estimate
 while (max(abs(r-x0))>tol) && (nIters<=MAX_ITERS)
 nIters = nIters+1; %%keep track of # of iterations
 x0 = r; %%current root estimate is last output of formula
 r = x0-J(x0)\f(x0); %%Newton's formula for next root estimate
 end
end

9.2 Broyden's method
%%
%% rootBroyden.m
%% 2014-06-12, Scott Hudson, for pedagogic purposes
%% Implements Broyden's method for finding a root of f(x)=0
%% where f and x are n-by-1 vectors. x0 is initial guess for root
%% and tol is termination tolerance for change in x.
%%
function [r,nIters] = rootBroyden(x0,f,tol)
 MAX_ITERS = 40; %%give up after this many iterations
 xk = x0;
 n = length(xk);
 fk = f(xk);
 Bk = eye(n,n);
 uk = -Bk\fk;
 nIters = 0;
 while (max(abs(uk))>tol) && (nIters<=MAX_ITERS)
 xk = xk+uk;
 fk = f(xk);
 Bk = Bk+fk*(uk')/(uk'*uk);
 uk = -Bk\fk;
 nIters = nIters+1;
 end
 r = xk+uk;
end

EE 221 Numerical Computing Scott Hudson 2015-08-18

	1 Introduction
	2 Notation
	3 Challenges
	4 Fixed-point iteration
	5 The Newton-Raphson method
	6 Broyden's method
	The fsolve command (Scilab)
	We have already learned how to use the fsolve command to find roots of one-dimensional functions. Precisely the same syntax applies in the case of an n-dimensional function
	r = fsolve(x0,f);
	The only difference is that r, x0 and f are now n-dimensional. If the Jacobian can be explicitly calculated that can be added as an additional argument
	r = fsolve(x0,f,J);
	and fsolve will utilize that for faster convergence.
	7 References
	8 Appendix – Scilab code
	8.1 Newton-Raphson method
	8.2 Broyden's method

	9 Appendix – Matlab code
	9.1 Newton-Raphson method
	9.2 Broyden's method

