
Lecture 12
Linear systems of equations II

1 Introduction
We have looked at Gauss-Jordan elimination and Gaussian elimination as ways to solve a linear
system Ax=b . We now turn to the LU decomposition, which is arguably “the best” way to
solve a linear system. We will then see how to use the backslash operator that is built in to
Scilab/Matlab.

2 LU decomposition
Generally speaking, a square matrix A, for example

A=(
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44
) (1)

can be “decomposed” or factored as

A=LU

where L and U are unit-lower-triangular and upper-triangular matrices of the form

L=(
1 0 0 0
l21 1 0 0
l31 l 32 1 0
l 41 l 42 l 43 1

) U=(
u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44
) (2)

One way to see this is to carry out the multiplication.

LU=(
u11 u12 u13 u14

u11 l21 u22+u12 l 21 u23+u13 l 21 u24+u14 l 21

u11 l31 u22 l 32+u12 l 31 u33+u23 l 32+u13 l 31 u34+u24 l 32+u14 l31

u11 l41 u22 l 42+u12 l 41 u33 l 43+u23 l 42+u13 l 41 u44+u23 l 43+u24 l 42+u14 l 41
) (3)

Comparing (1) and (3) we see immediately from the first row that

u11=a11 , u12=a12 , u13=a13 , u14=a14 (4)

Then from the first column we have

l 21=a21 /u11 , l 31=a31 /u11 , l 41=a41 /u11 (5)

Now the second row gives us

u22=a22−u12 l 21 , u23=a23−u13 l 21 , u24=a24−u14 l21 (6)

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 2/11

Then from the second column we have

l 32=(a32−u12 l31) /u22 , l 42=(a42−u12 l41)/u22 (7)

The third row now gives us

u33=a33−(u23 l32+u13 l 31) , u34=a34−(u24 l 32+u14 l 31) (8)

The third column gives us

l 43=a43−(u23 l42+u13 l 41)/u33 (9)

and, finally, from the fourth row

u44=a44−(u23 l 43+u24 l 42+u14 l 41) (10)

This can be generalized to a matrix A of size n-by-n in which case it forms Doolittle's algorithm.

LU decomposition can be conveniently done “in place,” meaning we don't need to actually create
the L and U matrices. Instead, we can replace the elements of A by the corresponding element of
L or U as they are calculated. The result is that A is replaced with

A ←(
u11 u12 u13 u14

l 21 u22 u23 u24

l 31 l 32 u33 u34

l 41 l 42 l 43 u44
)

The diagonal values of L (all 1's) are understood. The algorithm to do this can be stated very
concisely as

LU decomposition algorithm

 for k=1,2,… , n−1

 for i=k+1, k+2,… , n

 a ik ←a ik /akk

 for j=k+1,k+2,… , n

 a ij ←a ij−a ik akj

A Scilab implementation of this appears in the Appendix as linearLU. Note the three nested
for loops, implying that this is an O(n3

) process.

2.1 Solving a linear system using LU decomposition

LU decomposition replaces the original system A x=b with a factored or “decomposed” system
LU x=b . We get the solution x by a two-step process. First we define a vector y=U x and
write the system in the form L y=b :

(
1 0 0 0
l 21 1 0 0
l 31 l 32 1 0
l 41 l 42 l 43 1

)(
y1

y2

y3

y4
)=(

b1

b2

b3

b4
)

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 3/11

From the first row we see that the value of y1 is simply

y1=b1

The second row now gives us

l 21 y1+ y2=b2 → y2=b2−l 21 y1

and the ith row will provide the solution

y i=bi−∑
k =1

i−1

lik yk

This process used to solve for y is called forward substitution. The complete algorithm is

Forward-substitution algorithm

 The solution of Ly=b where L is unit-lower-triangular is

 for i=1,2,… , n

 y i=bi−∑
j=1

i−1

l ij y j (for i=1 there are no terms in the sum)

With two nested loops this is an O(n2
) process.

Now that we have y, in the next step we solve U x=y

(
u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44
)(

x1

x2

x3

x4
)=(

y1

y2

y3

y4
)

This upper-triangular system can be solved by the backward-substitution algorithm we developed
in the previous lecture. We restate it here for completeness.

Back-substitution algorithm

 The solution of Ux=y where U is upper-triangular is

 for i=n , n−1,n−2,… ,1

 x i=
1
u ii
(yi− ∑

j=i+1

n

u i , j x j) (summation is zero when i=n)

A Scilab implementation of forward- and back-substitution is given as
linearLUsubstitute in the Appendix.

Back-substitution is also an O(n2
) process. Therefore in solving Ax=b using LU

decomposition followed by forward- and back-substitution, the bulk of the computation is in
performing the LU decomposition. A detailed analysis shows that while Gauss-Jordan
elimination, Gaussian elimination and LU decomposition are all O(n3

) processes, Gauss-Jordan
elimination takes about 3 times as many, and Gaussian elimination about 1.5 times as many
operations as LU decomposition. Hence, LU decomposition is preferable.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 4/11

Moreover, in a matrix-vector equation of the form Ax=b , typically A represents the geometry,
structure and/or physical properties of the system being analyzed, x is the response of the system
(displacements, temperature, etc.) and b represents the “inputs” (such as forces or heat flows). It
is not uncommon to want to calculate the system response for several different inputs (different b
vectors). The beauty of the LU decomposition is that it only needs to be performed once at a
“computational cost” of O(n3

) . The solution x for a new input b then simply requires
application of the forward-substitution and back-substitution algorithms with are only O(n2

) .
This is a tremendous benefit over repeatedly solving Ax=b for each b.

2.2 Partial pivoting

In the LU decomposition algorithm we divide by the pivots akk . Obviously this fails if one of
these terms is zero, and it produces poor results if one of these terms is very small. As with
Gaussian elimination, the solution is to perform partial (or row) pivoting.

In the previous lecture we pointed out that swapping rows of the augmented matrix
~
A=(A , b)

does not change the solution vector x. This is because the b values are swapped along with the A
values. LU decomposition, however, does not consider the b vector. Rather it factors A into a
form in which we can quickly solve for x given any b vector. Therefore we need to keep track of
these row swaps so that we can apply them to the vector b before performing forward- and back-
substitution. The result is sometimes called LUP decomposition. We write

PA=LU

where P is a permutation matrix. As an example, consider

-->A = [1,2,3;4,5,6;7,8,9]
 A =

 1. 2. 3.
 4. 5. 6.
 7. 8. 9.

-->P = [0,1,0;0,0,1;1,0,0]
 P =

 0. 1. 0.
 0. 0. 1.
 1. 0. 0.

-->P*A
 ans =

 4. 5. 6.
 7. 8. 9.
 1. 2. 3.

P is an identity matrix in which the rows have been swapped. In this case the identity matrix
rows 1,2,3 are reordered 2,3,1. The product PA then simply reorders the rows of A in the same
manner. With row pivoting, we actually compute the LU decomposition of PA. Multiplying both
sides of Ax=b by P we have PAx=Pb , and then

LUx=Pb

This shows that we need only apply the permutation to a b vector and then we can obtain the

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 5/11

correct x using forward- and back-substitution. Instead of generating the matrix P we can form a
permutation vector p which lists the reordering of the rows of A, for example

p=(
2
3
1)

This tells us to perform the reordering

b ←(
b2

b3

b1
)

before performing forward- and back-substitution. In Scilab/Matlab, if b is a vector and p is a
permutation vector then b(p) is the permuted version of b. A Scilab implementation of the LUP
decomposition algorithm is given in the Appendix as linearLUP. An example of using this
functions to solve a linear system is

-->A = [1,2,3;4,5,-6;7,-8,-9];
-->b = [1;2;3];
-->[LU,p] = linearLUP(A);
-->x = linearLUsubstitute(LU,b(p));
-->disp(x);

which produces output

 0.6078431
 0.0392157
 0.1045752

As a check

-->A*x
 ans =

 1.
 2.
 3.

The same result is obtained with

-->LU = linearLU(A);
-->x = linearLUsubstitute(LU,b);

3 Matrix determinant
In your linear algebra course you learned about the determinant of a square matrix, which we will
write as det A . The determinant is very important theoretically. Numerically it does not find
much application, but on occasion you may want to compute it. We know from the properties of
the determinant that if A=LUP then

det A=det L det U det P

The determinant of a permutation matrix is ±1 with the sign depending on whether P represents
an even or odd number of row swaps. The determinant of a triangular matrix is simply the

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 6/11

product of its diagonal elements. Therefore det L=1 and

det A=det L det U det P=±u11u22 u33⋯unn

This is the “best” way to numerically calculate the determinant of a square matrix A. In
Scilab/Matlab the determinant can be calculated using the command det(A).

4 The backslash operator \
In both Scilab and Matlab the most common way to solve the square linear system Ax=b is
using the “backslash operator”

x = A\b

You can think of A\b as “A inverse times b,” or “A left-divided into b.” If A is non-singular,
Scilab uses LUP decomposition with partial pivoting and backward and forward substitution to
solve for x. If A is singular or “close” to singular (“poorly conditioned”), or is not square, then a
“least-squares” solution is computed. We will study least squares in a future lecture.

In Scilab/Matlab, “built-in” functions run much faster than anything we can code and run
ourselves. This is because built-in functions are written in a compiled language (such as C),
compiled and then called at run time. They run with the much greater speed of compiled code
whereas anything we write must run in the Scilab/Matlab interpreter environment. It is possible
for us to write compiled functions in C and have Scilab/Matlab call them, but this is an advanced
topic.

Repeating our previous example

-->A = [1,2,3;4,5,-6;7,-8,-9];
-->b = [1;2;3];
-->x = A\b
 x =

 0.6078431
 0.0392157
 0.1045752

5 Singular matrices
Even with pivoting, all of the methods we have studied may fail to solve Ax=b because there
may be no solution! In fact we know that if det A=0 then A is a singular matrix, A−1 fails to
exist, and it is therefore impossible to calculate x=A−1 b . Consider the following example

-->A = [1,2,3;4,5,9;6,7,13]
 A =

 1. 2. 3.
 4. 5. 9.
 6. 7. 13.

-->[A,p] = linearLUP(A)
 p =

 3.
 1.
 2.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 7/11

 A =

 6. 7. 13.
 0.1666667 0.8333333 0.8333333
 0.6666667 0.4 0.

Notice that a33=u33=0 , even with pivoting. It follows that det A=0 and the matrix is singular.
If we try to perform forward- and back-substitution we will fail when we come to the step where
we are supposed to divide by u33 .

The problem with this A is that the third column is the sum of the first two columns; the three
columns are linearly dependent, and the matrix is singular. There is no solution to Ax=b . If we
ask Scilab to find one we are told

-->x = A\[1;2;3]
Warning :
matrix is close to singular or badly scaled. rcond = 0.0000D+00
computing least squares solution. (see lsq).

 x =

 0.
 0.7105263
 - 0.1578947

-->A*x
 ans =

 0.9473684
 2.1315789
 2.9210526

We're warned that the matrix is “close to singular” and given a “least squares solution.” Testing
Ax we get something close to, but no equal to b. There is no true solution, but Scilab gives us
“the best that can be achieved” in its place.

6 References
1. Golub, G.H. and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press,

1983, ISBN: 0-8018-3011-7.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 8/11

7 Appendix – Scilab code

7.1 LU decomposition
0001 //
0002 // linearLU.sci
0003 // 2014-06-24, Scott Hudson, for pedagogic purposes
0004 // Given an n-by-n matrix A, calculate the LU decomposition
0005 // A = LU where U is upper triangular and L is unit lower triangular.
0006 // A is replaced by the elements of L and U.
0007 // No pivoting is performed.
0008 //
0009 function A=linearLU(A)
0010 n = size(A,1); //A is n-by-n
0011 for k=1:n-1
0012 for i=k+1:n
0013 A(i,k) = A(i,k)/A(k,k);
0014 for j=k+1:n
0015 A(i,j) = A(i,j)-A(i,k)*A(k,j);
0016 end
0017 end
0018 end
0019 endfunction

7.2 Forward and backward substitution
0001 //
0002 // linearLUsubstitute.sci
0003 // 2014-06-24, Scott Hudson, for pedagogic purposes
0004 // A has been replaced by its LU decomposition. This function applies
0005 // forward- and back-substitution to solve Ax=b. Note that if LUP
0006 // decomposition was performed then b(p) should be used as the b
0007 // argument where p is the permutation vector.
0008 //
0009 function x=linearLUsubstitute(A, b)
0010 n = length(b);
0011 y = zeros(b);
0012 for i=1:n //forward-substitution
0013 y(i) = b(i);
0014 for j=1:i-1
0015 y(i) = y(i)-A(i,j)*y(j); //a(i,j) = l(i,j) for j<i
0016 end
0017 end
0018 x = zeros(b);
0019 for i=n:-1:1 //back-substitution
0020 x(i) = y(i);
0021 for j=i+1:n
0022 x(i) = x(i)-A(i,j)*x(j); //a(i,j) = u(i,j) for j>i
0023 end
0024 x(i) = x(i)/A(i,i);
0025 end
0026 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 9/11

7.3 LU decomposition with partial pivoting
0001 //
0002 // linearLUP.sci
0003 // 2014-06-24, Scott Hudson, for pedagogic purposes
0004 // Given an n-by-n matrix A, calculate the LU decomposition
0005 // A = LU where U is upper triangular and L is unit lower triangular.
0006 // A is overwritten by LU. Partial pivoting is performed.
0007 // Vector p lists the rearrangement of the rows of A. Given a
0008 // vector b, the solution to A*x=b is the solution to L*U*x=b(p).
0009 //
0010 function [A, p]=linearLUP(A)
0011 n = size(A,1); //a is n-by-n
0012 //Replace A with its LU decomposition
0013 p = [1:n]';
0014 for k=1:n-1 //k indexes the pivot row
0015 //pivoting - find largest abs() in column k
0016 amax = abs(A(k,k));
0017 imax = k;
0018 for i=k+1:n
0019 if abs(A(i,k))>amax
0020 amax = abs(A(i,k));
0021 imax = i;
0022 end
0023 end
0024 if (imax~=k) //we found a larger pivot
0025 w = A(k,:); //copy row k
0026 A(k,:) = A(imax,:); //replace it with row imax
0027 A(imax,:) = w; //replace row imax with original row k
0028 t = p(k); //perform same swap of elements of p
0029 p(k) = p(imax);
0030 p(imax) = t;
0031 end
0032 //pivoting complete, continue with LU decomposition
0033 for i=k+1:n
0034 A(i,k) = A(i,k)/A(k,k);
0035 for j=k+1:n
0036 A(i,j) = A(i,j)-A(i,k)*A(k,j);
0037 end
0038 end
0039 end
0040 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 10/11

8 Appendix – Matlab code

8.1 LU decomposition
%%
%% linearLU.m
%% 2014-06-24, Scott Hudson, for pedagogic purposes
%% Given an n-by-n matrix A, calculate the LU decomposition
%% A = LU where U is upper triangular and L is unit lower triangular.
%% A is replaced by the elements of L and U.
%% No pivoting is performed.
%%
function A = linearLU(A)
 n = size(A,1); %%A is n-by-n
 for k=1:n-1
 for i=k+1:n
 A(i,k) = A(i,k)/A(k,k);
 for j=k+1:n
 A(i,j) = A(i,j)-A(i,k)*A(k,j);
 end
 end
 end
end

8.2 Forward and backward substitution
%%
%% linearLUsubstitute.m
%% 2014-06-24, Scott Hudson, for pedagogic purposes
%% A has been replaced by its LU decomposition. This function applies
%% forward- and back-substitution to solve Ax=b. Note that if LUP
%% decomposition was performed then b(p) should be used as the b
%% argument where p is the permutation vector.
%%
function x = linearLUsubstitute(A,b)
 n = length(b);
 y = zeros(size(b));
 for i=1:n %%forward-substitution
 y(i) = b(i);
 for j=1:i-1
 y(i) = y(i)-A(i,j)*y(j); %%a(i,j) = l(i,j) for j<i
 end
 end
 x = zeros(size(b));
 for i=n:-1:1 %%back-substitution
 x(i) = y(i);
 for j=i+1:n
 x(i) = x(i)-A(i,j)*x(j); %%a(i,j) = u(i,j) for j>i
 end
 x(i) = x(i)/A(i,i);
 end
end

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 12: Linear systems of equations II 11/11

8.3 LU decomposition with partial pivoting
%%
%% linearLUP.m
%% 2014-06-24, Scott Hudson, for pedagogic purposes
%% Given an n-by-n matrix A, calculate the LU decomposition
%% A = LU where U is upper triangular and L is unit lower triangular.
%% A is overwritten by LU. Partial pivoting is performed.
%% Vector p lists the rearrangement of the rows of A. Given a
%% vector b, the solution to A*x=b is the solution to L*U*x=b(p).
%%
function [A,p] = linearLUP(A)
 n = size(A,1); %%a is n-by-n
 %%Replace A with its LU decomposition
 p = [1:n]';
 for k=1:n-1 %%k indexes the pivot row
 %%pivoting - find largest abs() in column k
 amax = abs(A(k,k));
 imax = k;
 for i=k+1:n
 if abs(A(i,k))>amax
 amax = abs(A(i,k));
 imax = i;
 end
 end
 if (imax~=k) %%we found a larger pivot
 w = A(k,:); %%copy row k
 A(k,:) = A(imax,:); %%replace it with row imax
 A(imax,:) = w; %%replace row imax with original row k
 t = p(k); %%perform same swap of elements of p
 p(k) = p(imax);
 p(imax) = t;
 end
 %%pivoting complete, continue with LU decomposition
 for i=k+1:n
 A(i,k) = A(i,k)/A(k,k);
 for j=k+1:n
 A(i,j) = A(i,j)-A(i,k)*A(k,j);
 end
 end
 end
end

EE 221 Numerical Computing Scott Hudson 2015-08-18

	1 Introduction
	2 LU decomposition
	2.1 Solving a linear system using LU decomposition
	2.2 Partial pivoting

	3 Matrix determinant
	4 The backslash operator
	5 Singular matrices
	6 References
	7 Appendix – Scilab code
	7.1 LU decomposition
	7.2 Forward and backward substitution
	7.3 LU decomposition with partial pivoting

	8 Appendix – Matlab code
	8.1 LU decomposition
	8.2 Forward and backward substitution
	8.3 LU decomposition with partial pivoting

