
Lecture 12
Linear systems of equations II

1 Introduction
We have looked at Gauss-Jordan elimination and Gaussian elimination as ways to solve a linear
system  Ax=b . We now turn to the  LU decomposition, which is arguably “the best” way to
solve a linear system. We will  then see how to use the  backslash operator that is built  in to
Scilab/Matlab. 

2 LU decomposition
Generally speaking, a square matrix A, for example

A=(
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44
) (1)

can be “decomposed” or factored as

A=LU

where L and U are unit-lower-triangular and upper-triangular matrices of the form

L=(
1 0 0 0
l21 1 0 0
l31 l 32 1 0
l 41 l 42 l 43 1

)           U=(
u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44
) (2)

One way to see this is to carry out the multiplication. 

LU=(
u11 u12 u13 u14

u11 l21 u22+u12 l 21 u23+u13 l 21 u24+u14 l 21

u11 l31 u22 l 32+u12 l 31 u33+u23 l 32+u13 l 31 u34+u24 l 32+u14 l31

u11 l41 u22 l 42+u12 l 41 u33 l 43+u23 l 42+u13 l 41 u44+u23 l 43+u24 l 42+u14 l 41
) (3)

Comparing (1) and (3) we see immediately from the first row that

u11=a11  , u12=a12  , u13=a13  , u14=a14 (4)

Then from the first column we have

l 21=a21 /u11  , l 31=a31 /u11  , l 41=a41 /u11 (5)

Now the second row gives us

u22=a22−u12 l 21  , u23=a23−u13 l 21  , u24=a24−u14 l21 (6)
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Then from the second column we have

l 32=(a32−u12 l31) /u22  , l 42=(a42−u12 l41)/u22 (7)

The third row now gives us

u33=a33−(u23 l32+u13 l 31)  , u34=a34−(u24 l 32+u14 l 31) (8)

The third column gives us

l 43=a43−(u23 l42+u13 l 41)/u33 (9)

and, finally, from the fourth row

u44=a44−(u23 l 43+u24 l 42+u14 l 41) (10)

This can be generalized to a matrix A of size n-by-n in which case it forms Doolittle's algorithm. 

LU decomposition can be conveniently done “in place,” meaning we don't need to actually create
the L and U matrices. Instead, we can replace the elements of A by the corresponding element of
L or U as they are calculated. The result is that A is replaced with

A ←(
u11 u12 u13 u14

l 21 u22 u23 u24

l 31 l 32 u33 u34

l 41 l 42 l 43 u44
)

The diagonal values of  L (all 1's) are understood.  The algorithm to do this can be stated very
concisely as 

LU decomposition algorithm

    for k=1,2,… , n−1

        for i=k+1, k+2,… , n

            a ik ←a ik /akk

            for j=k+1,k+2,… , n

                a ij ←a ij−a ik akj

A Scilab implementation of this appears in the Appendix as linearLU. Note the three nested
for loops, implying that this is an O(n3

)  process. 

2.1 Solving a linear system using LU decomposition

LU decomposition replaces the original system A x=b  with a factored or “decomposed” system
LU x=b . We get the solution  x by a two-step process. First we define a vector y=U x  and
write the system in the form L y=b :

(
1 0 0 0
l 21 1 0 0
l 31 l 32 1 0
l 41 l 42 l 43 1

)(
y1

y2

y3

y4
)=(

b1

b2

b3

b4
)
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From the first row we see that the value of y1  is simply

y1=b1

The second row now gives us

l 21 y1+ y2=b2 → y2=b2−l 21 y1

and the ith row will provide the solution

y i=bi−∑
k =1

i−1

lik yk

This process used to solve for y is called forward substitution. The complete algorithm is

Forward-substitution algorithm

  The solution of Ly=b  where L is unit-lower-triangular is

  for i=1,2,… , n

      y i=bi−∑
j=1

i−1

l ij y j  (for i=1  there are no terms in the sum)

With two nested loops this is an O(n2
)  process.

Now that we have y, in the next step we solve U x=y

(
u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44
)(

x1

x2

x3

x4
)=(

y1

y2

y3

y4
)

This upper-triangular system can be solved by the backward-substitution algorithm we developed
in the previous lecture. We restate it here for completeness.

Back-substitution algorithm

  The solution of Ux=y  where U is upper-triangular is

  for i=n , n−1,n−2,… ,1

      x i=
1
u ii
( yi− ∑

j=i+1

n

u i , j x j)  (summation is zero when i=n )

A  Scilab  implementation  of  forward-  and  back-substitution  is  given  as
linearLUsubstitute in the Appendix.

Back-substitution  is  also  an  O(n2
)  process.  Therefore  in  solving  Ax=b  using  LU

decomposition followed by forward- and back-substitution,  the bulk of the computation is  in
performing  the  LU  decomposition.  A  detailed  analysis  shows  that  while  Gauss-Jordan
elimination, Gaussian elimination and LU decomposition are all O(n3

)  processes, Gauss-Jordan
elimination takes about 3 times as many, and Gaussian elimination about 1.5 times as many
operations as LU decomposition. Hence, LU decomposition is preferable. 
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Moreover, in a matrix-vector equation of the form Ax=b , typically A represents the geometry,
structure and/or physical properties of the system being analyzed, x is the response of the system
(displacements, temperature, etc.) and b represents the “inputs” (such as forces or heat flows). It
is not uncommon to want to calculate the system response for several different inputs (different b
vectors). The beauty of the LU decomposition is that it only needs to be performed once at a
“computational  cost”  of  O(n3

) .  The  solution  x for  a  new  input  b then  simply  requires
application of the forward-substitution and back-substitution algorithms with are only  O(n2

) .
This is a tremendous benefit over repeatedly solving Ax=b  for each b. 

2.2 Partial pivoting

In the LU decomposition algorithm we divide by the pivots  akk . Obviously this fails if one of
these terms is zero, and it produces poor results if one of these terms is very small.  As with
Gaussian elimination, the solution is to perform partial (or row) pivoting. 

In the previous lecture we pointed out that swapping rows of the augmented matrix 
~
A=(A , b)

does not change the solution vector x. This is because the b values are swapped along with the A
values. LU decomposition, however, does not consider the  b vector. Rather it factors  A into a
form in which we can quickly solve for x given any b vector. Therefore we need to keep track of
these row swaps so that we can apply them to the vector b before performing forward- and back-
substitution. The result is sometimes called LUP decomposition. We write

PA=LU

where P is a permutation matrix. As an example, consider

-->A = [1,2,3;4,5,6;7,8,9]
 A  =
 
    1.    2.    3.  
    4.    5.    6.  
    7.    8.    9.  
 
-->P = [0,1,0;0,0,1;1,0,0]
 P  =
 
    0.    1.    0.  
    0.    0.    1.  
    1.    0.    0.  
 
-->P*A
 ans  =
 
    4.    5.    6.  
    7.    8.    9.  
    1.    2.    3.

P is an identity matrix in which the rows have been swapped. In this case the identity matrix
rows 1,2,3 are reordered 2,3,1. The product PA then simply reorders the rows of A in the same
manner. With row pivoting, we actually compute the LU decomposition of PA. Multiplying both
sides of Ax=b  by P we have PAx=Pb , and then

LUx=Pb

This shows that we need only apply the permutation to a  b vector and then we can obtain the
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correct x using forward- and back-substitution. Instead of generating the matrix P we can form a
permutation vector p which lists the reordering of the rows of A, for example 

p=(
2
3
1)

This tells us to perform the reordering

b ←(
b2

b3

b1
)

before performing forward- and back-substitution. In Scilab/Matlab, if  b is a vector and  p is a
permutation vector then b( p)  is the permuted version of b. A Scilab implementation of the LUP
decomposition algorithm is given in the Appendix as  linearLUP. An example of using this
functions to solve a linear system is

-->A = [1,2,3;4,5,-6;7,-8,-9];
-->b = [1;2;3];
-->[LU,p] = linearLUP(A);
-->x = linearLUsubstitute(LU,b(p));
-->disp(x);

which produces output

    0.6078431  
    0.0392157  
    0.1045752 

As a check

-->A*x
 ans  =
 
    1.  
    2.  
    3.

The same result is obtained with

-->LU = linearLU(A);
-->x = linearLUsubstitute(LU,b);

3 Matrix determinant
In your linear algebra course you learned about the determinant of a square matrix, which we will
write as  det A . The determinant is very important theoretically. Numerically it does not find
much application, but on occasion you may want to compute it. We know from the properties of
the determinant that if A=LUP  then

det A=det L det U det P

The determinant of a permutation matrix is ±1  with the sign depending on whether P represents
an even or odd number of row swaps.  The determinant  of a triangular matrix  is  simply the
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product of its diagonal elements. Therefore det L=1  and

det A=det L det U det P=±u11u22 u33⋯unn

This  is  the  “best”  way to  numerically  calculate  the  determinant  of  a  square  matrix  A.  In
Scilab/Matlab the determinant can be calculated using the command det(A). 

4 The backslash operator \
In both Scilab and Matlab the most common way to solve the square linear system Ax=b  is
using the “backslash operator”

x = A\b

You can think of  A\b as “A inverse times b,” or “A left-divided into b.” If A is non-singular,
Scilab uses LUP decomposition with partial pivoting and backward and forward substitution to
solve for x. If A is singular or “close” to singular (“poorly conditioned”), or is not square, then a
“least-squares” solution is computed. We will study least squares in a future lecture. 

In  Scilab/Matlab,  “built-in”  functions  run  much faster  than  anything  we  can  code  and  run
ourselves. This is because built-in functions are written in a compiled language (such as C),
compiled and then called at run time. They run with the much greater speed of compiled code
whereas anything we write must run in the Scilab/Matlab interpreter environment. It is possible
for us to write compiled functions in C and have Scilab/Matlab call them, but this is an advanced
topic. 

Repeating our previous example 

-->A = [1,2,3;4,5,-6;7,-8,-9];
-->b = [1;2;3];
-->x = A\b
 x  =
 
    0.6078431  
    0.0392157  
    0.1045752  

5 Singular matrices
Even with pivoting, all of the methods we have studied may fail to solve Ax=b  because there
may be no solution! In fact we know that if det A=0  then A is a singular matrix, A−1  fails to
exist, and it is therefore impossible to calculate x=A−1 b . Consider the following example

-->A = [1,2,3;4,5,9;6,7,13]
 A  =
 
    1.    2.    3.   
    4.    5.    9.   
    6.    7.    13.

-->[A,p] = linearLUP(A)
 p  =
 
    3.  
    1.  
    2.  
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 A  =
 
    6.           7.           13.        
    0.1666667    0.8333333    0.8333333  
    0.6666667    0.4          0. 

Notice that a33=u33=0 , even with pivoting. It follows that det A=0  and the matrix is singular.
If we try to perform forward- and back-substitution we will fail when we come to the step where
we are supposed to divide by u33 .

The problem with this  A is that the third column is the sum of the first two columns; the three
columns are linearly dependent, and the matrix is singular. There is no solution to Ax=b . If we
ask Scilab to find one we are told

-->x = A\[1;2;3]
Warning :
matrix is close to singular or badly scaled. rcond =    0.0000D+00
computing least squares solution. (see lsq).

 x  =
 
    0.         
    0.7105263  
  - 0.1578947  

-->A*x
 ans  =
 
    0.9473684  
    2.1315789  
    2.9210526

We're warned that the matrix is “close to singular” and given a “least squares solution.” Testing
Ax  we get something close to, but no equal to b. There is no true solution, but Scilab gives us
“the best that can be achieved” in its place. 

6 References
1. Golub, G.H. and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press,

1983, ISBN: 0-8018-3011-7.
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7 Appendix – Scilab code

7.1 LU decomposition
0001  //////////////////////////////////////////////////////////////////////
0002  // linearLU.sci
0003  // 2014-06-24, Scott Hudson, for pedagogic purposes
0004  // Given an n-by-n matrix A, calculate the LU decomposition
0005  // A = LU where U is upper triangular and L is unit lower triangular.
0006  // A is replaced by the elements of L and U.
0007  // No pivoting is performed.
0008  //////////////////////////////////////////////////////////////////////
0009  function A=linearLU(A)
0010    n = size(A,1); //A is n-by-n
0011    for k=1:n-1
0012      for i=k+1:n
0013        A(i,k) = A(i,k)/A(k,k);
0014        for j=k+1:n
0015          A(i,j) = A(i,j)-A(i,k)*A(k,j);
0016        end
0017      end
0018    end
0019  endfunction

7.2 Forward and backward substitution
0001  //////////////////////////////////////////////////////////////////////
0002  // linearLUsubstitute.sci
0003  // 2014-06-24, Scott Hudson, for pedagogic purposes
0004  // A has been replaced by its LU decomposition. This function applies
0005  // forward- and back-substitution to solve Ax=b. Note that if LUP
0006  // decomposition was performed then b(p) should be used as the b
0007  // argument where p is the permutation vector.
0008  //////////////////////////////////////////////////////////////////////
0009  function x=linearLUsubstitute(A, b)
0010    n = length(b);
0011    y = zeros(b);
0012    for i=1:n //forward-substitution
0013      y(i) = b(i);
0014      for j=1:i-1
0015        y(i) = y(i)-A(i,j)*y(j); //a(i,j) = l(i,j) for j<i
0016      end
0017    end
0018    x = zeros(b);
0019    for i=n:-1:1 //back-substitution
0020      x(i) = y(i);
0021      for j=i+1:n
0022        x(i) = x(i)-A(i,j)*x(j); //a(i,j) = u(i,j) for j>i
0023      end
0024      x(i) = x(i)/A(i,i);
0025    end
0026  endfunction
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7.3 LU decomposition with partial pivoting
0001  //////////////////////////////////////////////////////////////////////
0002  // linearLUP.sci
0003  // 2014-06-24, Scott Hudson, for pedagogic purposes
0004  // Given an n-by-n matrix A, calculate the LU decomposition
0005  // A = LU where U is upper triangular and L is unit lower triangular.
0006  // A is overwritten by LU. Partial pivoting is performed. 
0007  // Vector p lists the rearrangement of the rows of A. Given a 
0008  // vector b, the solution to A*x=b is the solution to L*U*x=b(p).
0009  //////////////////////////////////////////////////////////////////////
0010  function [A, p]=linearLUP(A)
0011    n = size(A,1); //a is n-by-n
0012    //Replace A with its LU decomposition
0013    p = [1:n]';
0014    for k=1:n-1 //k indexes the pivot row
0015      //pivoting - find largest abs() in column k
0016      amax = abs(A(k,k));
0017      imax = k;
0018      for i=k+1:n
0019        if abs(A(i,k))>amax
0020          amax = abs(A(i,k));
0021          imax = i;
0022        end
0023      end
0024      if (imax~=k) //we found a larger pivot
0025        w = A(k,:); //copy row k
0026        A(k,:) = A(imax,:); //replace it with row imax
0027        A(imax,:) = w; //replace row imax with original row k
0028        t = p(k); //perform same swap of elements of p
0029        p(k) = p(imax);
0030        p(imax) = t;
0031      end
0032      //pivoting complete, continue with LU decomposition
0033      for i=k+1:n
0034        A(i,k) = A(i,k)/A(k,k);
0035        for j=k+1:n
0036          A(i,j) = A(i,j)-A(i,k)*A(k,j);
0037        end
0038      end
0039    end
0040  endfunction
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8 Appendix – Matlab code

8.1 LU decomposition
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% linearLU.m
%% 2014-06-24, Scott Hudson, for pedagogic purposes
%% Given an n-by-n matrix A, calculate the LU decomposition
%% A = LU where U is upper triangular and L is unit lower triangular.
%% A is replaced by the elements of L and U.
%% No pivoting is performed.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function A = linearLU(A)
  n = size(A,1); %%A is n-by-n
  for k=1:n-1
    for i=k+1:n
      A(i,k) = A(i,k)/A(k,k);
      for j=k+1:n
        A(i,j) = A(i,j)-A(i,k)*A(k,j);
      end
    end
  end
end

8.2 Forward and backward substitution
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% linearLUsubstitute.m
%% 2014-06-24, Scott Hudson, for pedagogic purposes
%% A has been replaced by its LU decomposition. This function applies
%% forward- and back-substitution to solve Ax=b. Note that if LUP
%% decomposition was performed then b(p) should be used as the b
%% argument where p is the permutation vector.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = linearLUsubstitute(A,b)
  n = length(b);
  y = zeros(size(b));
  for i=1:n %%forward-substitution
    y(i) = b(i);
    for j=1:i-1
      y(i) = y(i)-A(i,j)*y(j); %%a(i,j) = l(i,j) for j<i
    end
  end
  x = zeros(size(b));
  for i=n:-1:1 %%back-substitution
    x(i) = y(i);
    for j=i+1:n
      x(i) = x(i)-A(i,j)*x(j); %%a(i,j) = u(i,j) for j>i
    end
    x(i) = x(i)/A(i,i);
  end
end
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8.3 LU decomposition with partial pivoting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% linearLUP.m
%% 2014-06-24, Scott Hudson, for pedagogic purposes
%% Given an n-by-n matrix A, calculate the LU decomposition
%% A = LU where U is upper triangular and L is unit lower triangular.
%% A is overwritten by LU. Partial pivoting is performed. 
%% Vector p lists the rearrangement of the rows of A. Given a 
%% vector b, the solution to A*x=b is the solution to L*U*x=b(p).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [A,p] = linearLUP(A)
  n = size(A,1); %%a is n-by-n
  %%Replace A with its LU decomposition
  p = [1:n]';
  for k=1:n-1 %%k indexes the pivot row
    %%pivoting - find largest abs() in column k
    amax = abs(A(k,k));
    imax = k;
    for i=k+1:n
      if abs(A(i,k))>amax
        amax = abs(A(i,k));
        imax = i;
      end
    end
    if (imax~=k) %%we found a larger pivot
      w = A(k,:); %%copy row k
      A(k,:) = A(imax,:); %%replace it with row imax
      A(imax,:) = w; %%replace row imax with original row k
      t = p(k); %%perform same swap of elements of p
      p(k) = p(imax);
      p(imax) = t;
    end
    %%pivoting complete, continue with LU decomposition
    for i=k+1:n
      A(i,k) = A(i,k)/A(k,k);
      for j=k+1:n
        A(i,j) = A(i,j)-A(i,k)*A(k,j);
      end
    end
  end
end
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