
Lecture 10
Linear algebra

1 Introduction
Engineers deal with many vector quantities, such as forces, positions, velocities, heat flow, stress
and strain, gravitational and electric fields and on and on. In this lecture we want to review basic
concepts and operations on vectors. We will see how a linear system of equations can naturally
arise  from  physical  constraints  on  linear  combinations  of  vectors,  and  how  the  resulting
bookkeeping naturally leads to the idea of a matrix and matrix-vector equations.

2 Vectors
Abstractly a vector is simply a one-dimensional array of numbers. The dimension of the vector is
the number of elements in the array. When arranged vertically we call this a column vector. The
following are three-dimensional column vectors

u=(u1

u2

u3
)      v=( 4

−3
1)

A horizontal arrangement is called a row vector, such as

w=(−11 ,7 , 2)      r=( x , y , z )
In engineering applications a vector almost always represents a physical quantity that has both
magnitude and direction. The elements of the array are the components of the vector along the
corresponding coordinate axis. It's very useful to visualize a vector as an arrow in space with the
same direction and the arrow length representing the magnitude.

As an example, the two-dimensional vector

r=(3
2)

can be graphically represented (Fig. 1) as an arrow from the origin to a point with rectangular
coordinates  (3,2) .  We say  r has component  3 in  the  x direction and component  2 in the  y
direction. Converting the x,y coordinates into polar form

x=ρ cosϕ
y=ρsin ϕ
ρ=√ x2+ y2=√13≈3.61

ϕ=tan−1 y
x
=tan−1 2

3
≈33.7o

We identify the length ρ  as the magnitude of the vector and ϕ  as its direction (relative to the x
axis). 

Here's a potential source of confusion. There is not necessarily anything physically significant
about the arrow's endpoint,  (3,2)  in this case. Say this vector represents a force acting on a
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particle at the origin. Then the force exists at a single point, the origin. It does not exist at the
point (3,2)  or anywhere except the origin. A force acting on a point particle has no extension in
space. We are simply using a physical arrow to  visualize the magnitude and direction of the
force. The coordinates in this case might have units of newtons. On the other hand, suppose the
vector  r represents a displacement in which a particle originally at the origin is moved to the
point x=3 , y=2 . In this case there is a physical significance to the arrow's endpoint. This is just
something to keep in mind. We get so accustomed to representing physical quantities such as
forces and velocities by arrows that it's  easy to forget that they do not necessarily physically
coincide with these arrows. 

A vector does not have to “start” at the origin. Suppose a particle is at location x=3 m , y=2 m
and moving with velocity v x=2m/s , v y=−1m/s . We could illustrate this situation as shown in
Fig. 2.

In this case it's more physically meaningful to put the tail of the v vector at the particle's location.
Again, the location of the head of the v vector is not physically significant. In fact the r and v
vectors don't  even have the same units  – m vs.  m/s.  However,  could say that if  the particle
traveled at velocity v for 1 second it would end up at the head of the vector v, which is location
x=5 , y=1 . In fact,  assuming  v remains constant, we could write the particle position as the

vector
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Fig. 1 Length and direction of a vector. In two dimensions these are
just the polar coordinate representation of the vector components.

Fig. 2 Particle at position r moving with velocity v. If the particle moved
with constant velocity for 1 second it would arrive at the head of v.
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r (t)=( x (t)
y (t))=(3

2)+ ( 2
−1)t=(3+ 2 t

2−t )
This illustrates the concept of vector addition. Often, however, v will represent the instantaneous
velocity of a particle following a curved trajectory, as illustrated in Fig. 3. In this case the particle
will not following the v vector (expect for an instant) or arrive at its head. 

2.1 Vector norm (length)

In two- and three-dimensional geometry we have the Pythagorean theorem which gives use the
length of a displacement with components x,y or x,y,z as

L=√ x2+ y2  or L=√ x2+ y2+ z2

We generalize this to an n-dimensional vector u to define the vector norm as

‖u‖=√u1
2+ u2

2+⋯+ un
2 (1)

Even though the “length” of a ten-dimensional vector doesn't have a direct physical meaning, the
norm concept is very useful. 

This formula is actually only one way to define a vector norm. The p-norm is defined as

‖u‖p=(|u1|
p+ |u2|

p+ ⋯+ |un|
p)

1
p
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Fig. 3 If v is an instantaneous velocity the particle does
not follow the vector v for any extended length of time. 

Fig.  4 unit vectors centered at the origin fall on
the unit circle in 2D and on the unit sphere in 3D.
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The  Euclidean norm of  the Pythagorean theorem would then be called  the “2-norm.” When
p →∞  we obtain the “infinity-norm”

‖u‖∞=max|uk|
which has important applications in, among other things, control systems theory. Suppose the kth

element of u represents the distances traveled during the  kth segment of a trip. Then the 1-norm

‖u‖1=|u1|+ |u2|+ ⋯+ |un|
is  just  the  total  length  of  the  trip.  When  vectors  are  represented  by  boldface  letters  the
corresponding italic letter is often taken to represent the norm

w=‖w‖

In both Scilab and Matlab the function  norm(x,p) calculates  the  p-norm of vector  x.  For
example

-->x = [1;2;3]
 x  =
 
    1.  
    2.  
    3.  

-->norm(x,1)
 ans  =
 
    6.  
 
-->norm(x,2)
 ans  =
 
    3.7416574  
 
-->norm(x,'inf')
 ans  =
 
    3.  

-->norm(x)
 ans  =
 
    3.7416574 

Note that  norm(x) gives the default  2-norm or Euclidean norm. In this  class we will  take
“norm” to mean Euclidean norm, unless explicitly stated otherwise. 

A vector with norm of 1 is called a unit vector. We can make any non-zero vector a unit vector
by dividing it by its norm. Commonly a “hat” or the letter a with a subscript is used to denote a
unit vector, for example

au= û= u
‖u‖

A unit  vector  represents  a  “pure  direction.”  In  two  and  three  dimensions  this  is  literally  a
direction in space (Fig. 4), but in higher dimensions it's a “direction” only in an abstract sense.
The concept is still very useful, however. 
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3 Scalar/inner/dot product
In three dimensions the  scalar product (also called the  inner product or  dot product) of two
vectors is

u⋅v=u1 v1+ u2 v2+ u3 v3=u v cosθuv (2)

where  θuv  is  the  angle  between  the  vectors.  The  scalar  product  readily  generalizes  to  n-
dimensional vectors as

u⋅v=∑
i=1

n

ui v i (3)

We can still write

u⋅v=u v cosθuv (4)

which defines the “angle” between u and v as 

cosθuv≡
u⋅v

‖u‖‖v‖
=û⋅v̂ (5)

Two vectors with a zero scalar product are said to be orthogonal. Since cos90o=0  this means
that the vectors form a “right angle,” they are “perpendicular.” 

4 Vector/cross product
In three dimensions the vector product (also called the cross product) of two vectors is

w=u×v=(u2 v3−u3 v2

u3 v1−u1 v3

u1 v2−u2 v1
) (6)

The vector product is specific to three dimensions; it does not readily generalize to n dimensions.
It  is  very  important  in  many applications.  For  example  torque  about  the  origin  is  the  cross
product of force and position. The magnitude of the cross product is

w=u v sinθuv (7)

Since sin 0=0  the vector product of parallel vectors is zero. 

5 Matrix-vector product
Suppose we have two, two-dimensional vectors

u=(u1

u2
)      v=(v1

v2
) (8)

A certain displacement might be described as “travel x1  times u followed by x2  times v to end
up at y.” Algebraically we have x1 u+ x2 v=y  or

x1(u1

u2
)+ x2(v1

v2
)=( y1

y2
) (9)
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In terms of components

u1 x1+ v1 x2= y1

u2 x1+ v2 x2= y2

(10)

For bookkeeping purposes we will write this as

(u1 v1

u2 v2
)(x1

x2
)=( y1

y2
) (11)

where the two-dimensional  array is  a  matrix,  the columns of which are the vectors  u and  v.
Thinking of this array as a single entity A we can specify its elements using two indicies

(a11 a12

a21 a22
)(x1

x2
)=(y1

y2
) (12)

This is just a different way to express the two equations

a11 x1+ a12 x2= y1

a21 x1+ a22 x2= y2

(13)

Employing the notation

A=(a11 a12

a21 a22
), x=( x1

x2
),y=( y1

y2
) (14)

we can write (13) compactly as the matrix-vector equation

Ax=y

If A is an m-by-n matrix

A=(a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
am1 am2 ⋯ amn

) (15)

and x is an n-by-1 “matrix” (a column vector)

x=(x1

x2

⋮
xn
) (16)

Then the product y=Ax  is an m-by-1 “matrix” (a column vector)

y=( y1

y2

⋮
ym
) (17)

with components
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y i=∑
j=1

n

aij x j (18)

Note that the product Ax as defined by (18) only “works” if number of columns of A is equal to
the number of elements of x (in this  case both are n); each column of A gets multiplied by the
corresponding element of x. 

We are most often (but not always) interested in the case m=n  where the matrix A is square. In
any case we can visualize the linear system 

Ax=y (19)

as (Fig. 5)

• think of each column of A as a vector

• scale the jth column by the factor x j

• sum up all the scaled vectors to get y

In this visualization we assume that x is known and we want to calculate y. Often we are faced
with the inverse problem where y is known and we want to calculate x. We formally write

x=A−1 y (20)

where A−1  is the inverse of matrix A. Solving this problem will be the topic of the next lecture.
For  now we want  to  motivate  our  study of  linear  systems of  equations  by considering  two
important problems which give rise to such systems.

6 Two-dimensional truss problem
In Civil Engineering a classic problem is to design a bridge structure that can withstand some
specified loads (Fig. 6). In its simplified form this leads to the two-dimensional truss problem
(Fig. 7). We assume that the structure consists of a number of linear members of negligible mass
which are connected at their ends by frictionless pins at various joints. The members are either in
compression or tension, so they either push or pull on the joints. External forces may be applied
at the joints.  Two joints,  that we will  take to be joints  1 and 2, connect the structure to the
ground, and at these joints the ground exerts reaction forces. The truss problem is to calculate the
member  compression/tension  forces  and  the  reaction  forces,  given  the  truss  geometry  and
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Fig. 5 The product Ax=y can be thought of as summing scaled versions of the column vectors of A. 
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external applied forces. The conditions for static equilibrium are that the net vector force at each
joint is zero (the so-called “method of joints”). In two dimensions this gives us two equations

F x
net=0

F y
net=0

(21)

at each joint. 

To  be  specific  let's  take  the  system  illustrated  in  Fig.  7.  There  are  four  joints  located  at
(xk , yk) , k=1,2,3,4  and five members with compression forces  uk , k=1,2,3,4,5 . An external
force is applied at joint 4 with components ( f 4 x , f 4 y ) . A reaction force (due to the mounting of
the  system)  is  applied  at  joint  1  with  components  (r 1x , r 1 y)  and  a  reaction  force  with  y
component r 2 y  is applied at joint 2. 

Assuming the force ( f 4 x , f 4 y )  is known, there are eight unknowns which form the components
of an eight-dimensional vector:

u=(
u1

u2

u3

u4

u5

u6=r x 1

u7=r y1

u8=r y 2

) (22)

This  bookkeeping  is  an  example  of  how  higher-dimensional  spaces  arise.  Our  vector  is  a
collection of various (arbitrarily arranged) physical parameters as opposed to a three-dimensional
force or velocity with a direct physical significance. 

A given member pushes on a given joint in a direction determined by the member's endpoints.
For example, member m3  pushes on joint j 2  at an angle θ23  where

tan θ23=
y2− y3

x2−x3

(23)
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Fig. 6 A truss bridge formed of “members” connected at “joints.”
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In general we will define

tan θij=
y i− y j

x i−x j

(24)

The equations of equilibrium are now as follows.

At j 1

u1cosθ12+ u2 cosθ13+ u6=0
u1sinθ12+ u2sin θ13+ u7=0

(25)

At j 2

u1cosθ21+ u3 cosθ23+ u5 cosθ24=0
u1sinθ21+ u3sinθ23+ u5sinθ24+ u8=0

(26)

At j 3

u2 cosθ31+ u3 cosθ32+ u4 cosθ34=0
u2 sinθ31+ u3 sinθ32+ u4 sinθ34=0

(27)

At j 4

u4 cosθ43+ u5 cosθ42+ f 4 x=0
u4 sinθ43+ u5 sinθ42+ f 4 y=0

(28)

Putting these together into an eight-by-eight linear system we have

A u=b (29)

with
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Fig. 7: Geometry of the truss problems. Member mi  has compression force ui  and connects to other
members at  some joints jk . Applied forces f and reaction forces r also acts on two or more joints. 
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A=(
cosθ12 cosθ13 0 0 0 1 0 0
sinθ12 sinθ13 0 0 0 0 1 0
cosθ21 0 cosθ23 0 cos θ24 0 0 0
sinθ21 0 sinθ23 0 sinθ24 0 0 1

0 cosθ31 cosθ32 cosθ34 0 0 0 0
0 sinθ31 sinθ32 sinθ34 0 0 0 0
0 0 0 cos θ43 cos θ42 0 0 0
0 0 0 sinθ43 sinθ42 0 0 0

) (30)

and

b=(
0
0
0
0
0
0

− f 4x

− f 4 y

) (31)

Notice that the applied forces shown up in the b (the “knowns”) vector while the member and
reaction forces form the u vector (the “unknowns”). 

From a programming perspective, the challenge would be to generalize this process to allow the
solution of an arbitrary truss problem. This would mostly involve figuring out a systematic way
to do the bookkeeping involved in forming the A matrix and the b vector.  

7 Laplace's equation in two dimensions
A very important equation in engineering analysis is Laplace's equation

∇2 f =0

where  f is  a continuous function of space such as  f (x , y ) .  This  field might  represent,  say,
temperature distribution over the surface of a metal plate. A solution of Laplace's equation  has
the property that the value of  f at any point is equal to the average value of  f  at neighboring
points.  This  is  why it  comes  up so  often  –  in  equilibrium Nature usually  “wants” physical
quantities (temperature, pressure, electrical potential) to be as “smooth” or as “averaged-out” as
possible. 

One approach to solving Laplace's equation numerically is to specify u at a discrete grid of points
and require that f at each point be equal to the average of f at neighboring points. Let's consider a
specific  two-dimensional  case  illustrated  in  Fig.  8.  The  indicies  i,j specify  x,y location,
respectively. The condition that  f at location  i,j is equal to the average of  f at its four nearest-
neighbor points is

f i , j=
1
4

( f i+ 1, j+ f i−1, j+ f i , j+1+ f i , j−1) (32)
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or equivalently

4 f i , j− f i+ 1, j− f i−1, j− f i , j+ 1− f i , j−1=0 (33)

We assume the f values on the boundary are specified. These form the boundary conditions. Our
task is then to calculate the interior f values such that Laplace's equation is satisfied.

To use our matrix-vector formalism (29) the unknowns need to be arranged in a one-dimensional
column vector. As illustrated (Fig. 8), one way to do this is to number the interior points from 1
to 16 as unknowns

uk= f i , j  where k=4( j−2)+ (i−1)

Just running through the 16 points and considering (33) we can, by inspection, obtain a 16-by-16
linear system of the form (29) with
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Fig. 8: Two-dimensional grid for solving Laplace's equation.
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A=(
4 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1 4 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 4 1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 −1 4 0 0 0 −1 0 0 0 0 0 0 0 0

−1 0 0 0 4 −1 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0 0
0 0 −1 0 0 −1 4 −1 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 −1 4 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0 4 −1 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0 −1 4 −1 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 −1 4 −1 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 −1 4 0 0 0 −1
0 0 0 0 0 0 0 0 −1 0 0 0 4 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4 −1
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 4

) (34)

and

b=(
f 1,2+ f 2,1

f 3,1

f 4,1

f 5,1

f 1,3

0
0
f 6,3

f 1,4

0
0
f 6,4

f 1,5+ f 2,6

f 3,6

f 4,6

f 5,6+ f 6,5

) (35)

The kth row of this system is a statement of (33) for unknown uk . This illustrates a few things.
First, the dimension n of our linear system is determined by the number of unknowns, not by the
2 or 3 dimensions of physical space. This number can easily be very large. Suppose we wanted to
have a 100-by-100 two-dimensional grid of unknown field values. This is not actually very large,
after all, a 100-by-100 pixel image is essentially a “thumbnail.” Yet this results in  n=10,000
unknowns and a matrix  A that is 10,000-by-10,000 in size. In three dimensions  the problem
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dimension would be  n=1003=1,000,000 , and our matrix would have  (106)2  or one trillion
entries! Yet these are often the size of problems we need to solve in engineering applications. 

Second, and fortunately for us, a glance at (34) and consideration of the way it was built using
(33) reveals that the great majority of entries in A will be zeros. We say that A is a sparse matrix.
So, even if it does contain a trillion elements, only a tiny fraction are non-zero. Sparse matrix
techniques exploit this fact to store and manipulate such matrices using orders-or-magnitude less
resources than would be needed for “dense” matrices, and they enable use to solve physically
significant  problems using available  computing power.  We will  take a look at  sparse matrix
techniques in a later lecture.
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