
Lecture 9
Polynomials

1 Introduction
The equation

p (x)=c1+ c2 x+ c3 x2+ c4 x3=0 (1)

is one equation in one unknown, and the root finding methods we developed previously can be
applied to solve it. However this is a polynomial equation, and there are theoretical results that
can be used to develop specialized root-finding methods that are more powerful than general-
purpose methods.

For polynomials of order n=1,2,3,4 there are analytic formulas for all roots. The single root of
c1+ c2 x=0 is x=−c1/c2 . The quadratic formula gives the two roots of

c1+ c2 x+ c3 x2=0

as

x=
−c2±√c2

2−4c1 c3

2 c3

The formulas for order 3 and 4 polynomials are too complicated to be of practical use. Therefore
to find the roots of order 3 and higher polynomials we are forced to use numerical methods. Yet
it is still the case that we have important theoretical results to guide us.

The fundamental theorem of algebra states that a polynomial of degree n has precisely n roots
(some of which may be repeated). However, these roots may be real or complex. Most of the root
finding algorithms we have studied so far apply only to a real function of a real variable. They
can find the real roots of a polynomial (if there are any) but not complex roots.

If the polynomial has real coefficients c1 , c2 ,… then complex roots (if any) come in complex-
conjugate pairs. Let z= x+ i y be a general complex number with real part x and imaginary part
y. If

c1+ c2 z+ c3 z2+ ⋯+ cn+ 1 zn=0

then taking the complex conjugate of both sides we have

c1
∗+ c2

∗ z∗+ c3
∗(z2)∗+⋯+ cn+ 1

∗ (zn)∗=0 (2)

where z∗=x−i y . Suppose the coefficients are real so that ck
∗=ck . Since (zk)∗=(z∗)k (2)

becomes

c1+ c2(z∗)+ c3(z∗)2+ ⋯+ cn+ 1(z∗)n=0

which tells us that if z is a root of the polynomial then so is z∗ . Therefore complex roots must
come in complex-conjugate pairs. From this we know that a polynomial of odd order has at least
one real root since we must always have an even number of complex roots.

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 2/15

Another way to see this is in terms of root bracketing. For very large (real) values of x, an nth

order polynomial is dominated by its highest power term

c1+ c2 x+ c3 x2+⋯+ cn+1 xn∼cn+ 1 xn

For n odd, xn is positive for positive x and negative for negative x. Therefore the polynomial
must change sign between x →−∞ and x →∞ . Since polynomials are continuous functions we
conclude that there must be a real root somewhere on the x axis.

For a complex root

p (z)=c1+ c2(x+ i y)+ c3(x+ i y)2+⋯+ cn+1(x+ i y)n

Expanding each term into real and imaginary parts, along the lines of

(x+ i y)2=x2− y2+ i 2 x y
(x+ i y)3=x3−3 x y2−i y (y2−3 x2)

we end up with an equation of the form

p (z)= f (x , y)+ i g (x , y)=0

which is actually two real equations in two real unknowns

(f (x , y)
g (x , y))=(0

0)
and so not directly solvable using our f (x)=0 algorithms.

2 Manipulating polynomials in Scilab
When we write out a polynomial such as (1) the variable x is simply a placeholder into which
some number is to be inserted, so the polynomial is fully specified by simply listing its
coefficients

[c1 , c2 ,… , cn+ 1]

Here is a major difference between Scilab and Matlab. Scilab follows the convention that an
array of polynomial coefficients begins with the constant term on the left and ends with the
coefficient of xn on the right. Matlab does the bookkeeping in the opposite direction. In Scilab
the coefficients

c = [-15,23,-9,1]

correspond to the polynomial −15+ 23 x−9 x2+ x3 . In Matlab the same coefficients correspond
to the polynomial −15 x3+ 23 x2−9 x+ 1 . The Matlab convention more closely corresponds to
the way we normally write polynomials (starting with the highest power). However, there are
some advantages to the Scilab convention. Regardless, I want to make it clear that we will be
following the Scilab convention, and most of the material in this section is particular to Scilab
(although there are counterparts in Matlab).

To explicitly form a polynomial in the variable x with coefficients c=[1,2,3] we use the
command

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 3/15

-->p = poly([1,2,3],'x','coeff')
 p =
 2
 1 + 2x + 3x

Notice that Scilab outputs an ascii typeset polynomial in the variable of interest. To form a
polynomial with roots at x=1 , x=2 we use the command

-->q = poly([1,2],'x','roots')
 q =
 2
 2 - 3x + x

Note that

(x−1)(x−2)= x2−3 x+ 2=2−3 x+ x2

You can multiply and divide polynomials

-->p*q
 ans =
 2 3 4
 2 + x + x - 7x + 3x

-->p/q
 ans =
 2
 1 + 2x + 3x

 2
 2 - 3x + x

In the second case we obtain a rational function of x. Now consider the somewhat redundant
appearing command

-->x = poly(0,'x')
 x =
 x

This assigns to the Scilab variable x a polynomial in the symbolic variable x having a single root
at x=0 , that is, it effectively turns x into a symbolic variable. Now we can enter expressions
such as

-->h = 3*x^3-4*x^2+7*x-15
 h =
 2 3
 - 15 + 7x - 4x + 3x

-->g = (x-1)*(x-2)*(x-3)
 g =
 2 3
 - 6 + 11x - 6x + x

To evaluate a polynomial (or rational function) at a specific number we use the horner
command

-->horner(h,3)
 ans =

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 4/15

 51.

-->horner(h,1-%i)
 ans =
 - 14. - 5.i

We can evaluate a polynomial (or rational function) at an array of numbers

-->v = [1,2,3]
 v =
 1. 2. 3.

-->horner(h,v)
 ans =
 - 9. 7. 51.

As always, we are only scratching the surface. See the Polynomials section of the Scilab Help
Browser for more information.

3 Factoring and deflation
Another thing we know about polynomials is that they can always (in principle) be factored

c1+ c2 z+ c3 z2+ ⋯+ cn+ 1 zn=cn+ 1(z−r1)(z−r2)⋯(z−r n)

where r 1 , r 2 ,… , r n are the (in general complex) roots of the polynomial. If we find one root, r 1

say, we can divide out a factor of (z−r1) to get a polynomial of degree n−1

c1+ c2 z+ c3 z 2+⋯+ cn+1 zn

z−r 1

=b1+ b2 z+⋯+ bn zn−1

This is the process of deflation. If you form the ratio of two polynomials with a common factor,
Scilab will cancel the common factor. Consider

-->p = (x-1)*(x-2)
 p =
 2
 2 - 3x + x

-->q = (x-1)*(x-3)
 q =
 2
 3 - 4x + x

-->p/q
 ans =

 - 2 + x

 - 3 + x

Notice that the common factor of x−1 has been canceled. This can be used for deflation

-->p/(x-2)
 ans =

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 5/15

 - 1 + x

 1

We need to consider the effect of finite precision. Suppose we've calculated a polynomial root r
numerically. We don't expect it to be exact. Will Scilab be able to factor it out of the polynomial?
Look at the following

-->p = (x-sqrt(2))*(x-%pi)
 p =
 2
 4.4428829 - 4.5558062x + x

-->p/(x-%pi*(1+1e-6))
 ans =
 2
 4.4428829 - 4.5558062x + x

 - 3.1415958 + x

-->p/(x-%pi*(1+1e-9))
 ans =

 - 1.4142136 + x

 1

The polynomial has a factor of (x−π) . In the first ratio we are trying to cancel a factor of
(x−π[1+ 10−6]) . Now π[1+ 10−6] is very close to π , but not close enough for Scilab to
consider them the same numbers, so no deflation occurs. On the other hand, in the second ratio
Scilab treats (x−π [1+ 10−9]) as numerically equivalent to (x−π) and deflates the polynomial
by that factor. The lesson is that a root estimate must be very accurate for it to be successfully
factored out of a polynomial.

4 Horner's method
Let's turn to the numerical mechanics of evaluating a polynomial. To compute

f (x)=c1+ c2 x+ c3 x2+⋯+ cn+ 1 xn

for some value of x, it is generally not a good idea to directly evaluate the terms as written.
Instead, consider the following factorization of a quadratic

c1+ c2 x+ c3 x2=c1+ (c2+ c3 x) x

a cubic

c1+ c2 x+ c3 x2+ c4 x3=c1+ [c2+ (c3+ c4 x) x] x

and a quartic

c1+ c2 x+ c3 x2+ c4 x3+ c5 x4=c1+ (c2+ [c3+ (c4+ c5 x) x] x) x

Notice that in all cases the expressions on the right involve only two simple operations: multiply
by x or add a coefficient. There is no need to evaluate all the various powers x , x2 , x3 , x4 ,… .
This is particularly important for low-level computational systems such as microcontrollers,

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 6/15

which typically do not have the hardware floating-point accelerator that a high-end cpu would.

Evaluating a polynomial using this factored form is called Horner's method. We can code it in a
few lines. See the function polyHorner in the Appendix. As we've already seen, Scilab
contains a built-in horner function.

Now consider polynomial deflation. Suppose we have a polynomial

p (x)=c1+ c2 x+ c3 x2+ c4 x3

and we know that r is a root. We want to factor (x−r) from p (x) to get a polynomial

q (x)=b1+ b2 x+ b3 x2

We must have

c1+ c2 x+ c3 x2+ c4 x3=(x−r)(b1+ b2 x+ b3 x2)
 =−r b1−rb2 x−r b3 x2

 + b1 x + b2 x2+ b3 x3

Equating coefficients of like powers of x we have

c4=b3

c3=−r b3+ b2

c2=−r b2+ b1

c1=−r b1

We can rearrange this to get

b3=c4

b2=c3+ r b3

b1=c2+ r b2

 0=c1+ r b1

Generalizing to an arbitrary order polynomial we have

bn=cn+ 1

bk=ck+ 1+ r bk + 1 for k=n−1,n−2,… ,1
(3)

Additionally, the equation c1+ r b1=0 must automatically be satisfied if r is a root. This
algorithm appears in the Appendix as polyDeflate.

5 Finding the roots of a polynomial
We are now in a position to write a function that solves for all n roots of an nth order polynomial.
The algorithm is simply

Polynomial root-finding algorithm

 for i=1 to n

 find a root r of p(z)

 remove a factor of (z-r) from p(z)

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 7/15

Newton's method actually works quite well at finding the complex zeros of a polynomial, and we
can use the rootNewton function we developed previously without modification. For the
purposes of calculating the derivative of a polynomial, note that if

p (x)=c1+ c2 x+ c3 x2+⋯+ cn+ 1 xn

then

p
′(x)=c2+ 2c3 x+⋯+ ncn+ 1 xn−1

=b1+ b2 x+⋯+ bn xn−1

and for 1≤k≤n

bk=k ck +1

In Scilab we can calculate these coefficients of the derivative as

b = c(2:n+1).*(1:n);

Now, one subtle point. If the coefficients ck are all real, then so are the coefficients bk . It

follows that if x is real then x− f (x)/ f
′(x) is real also. Therefore, if Newton's method starts on

the real axis, it can never leave the real axis. For that reason we need to start with a complex
value of x0 .

The function polyRoots shown in the Appendix is our implementation. We use
polyHorner to evaluate the polynomials. Iteratively we use rootNewton to find a (any)
root. Then we use polyDeflate to remove that root's factor and reduce the order of the
polynomial.

This simple code actually works pretty well. Run on several hundred randomly generated 7th

order polynomials it only failed about one percent of the time. However, those failures
demonstrate why numerical analysis is an active field of research. In any type of problem there
are almost always some “hard” cases which thwart a given algorithm. This motivates people to
develop more advanced methods. For polynomial root finding some of the more advanced
methods are Laguerre's method, Bairstow's method, the Durand–Kerner method, the Jenkins–
Traub algorithm and the companion-matrix method. In its built-in root finding function Matlab
uses the companion-matrix method while in Scilab you can use either the companion-matrix
method (default) or the Jenkins–Traub algorithm.

5.1 Polishing the roots

Numerical root finding and polynomial deflation will be subject to round-off and finite tolerance
errors. The more we deflate a polynomial the more error can be introduced into the coefficients.
So, especially for a large-order polynomial, we should be suspicious of the roots we find with the
polyRoots function. It is a very good idea to “polish” the roots using Newton's method on the
original polynomial before performing deflation. This process should be very rapid since we are
(presumably) very close to a true root. The function polyRootsPolished in the Appendix
adds root polishing to polyRoots.

6 The roots function
In both Scilab and Matlab there is a built-in roots function for finding all roots of a

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 8/15

polynomial. It's as simple as

r = roots(p);

where p is a polynomial and r is an array containing all roots of p. For example, in Scilab

-->p = poly([1,2,3,4,5,6],'x','coeff')
 p =
 2 3 4 5
 1 + 2x + 3x + 4x + 5x + 6x

-->r = roots(p)
 r =

 0.2941946 + 0.6683671i
 0.2941946 - 0.6683671i
 - 0.6703320
 - 0.3756952 + 0.5701752i
 - 0.3756952 - 0.5701752i

Once you know the roots you can, if you wish, write the polynomial in factored form. If the
polynomial has real coefficients then complex roots come in conjugate pairs. A product of the
form (z−r)(z−r∗) always reduces to a quadratic with real coefficients z2+ b z+ c . To avoid
factors with complex roots Scilab has the polfact command

-->polfact(p)
ans =
 2 2
6 0.5332650 - 0.5883891x + x 0.4662466 + 0.7513904x + x 0.6703320 + x

This tells us that our polynomial can be factored (approximately) as

1+ 2 x+ 3 x2+ 4 x3+ 5 x4+ 6 x5=6 (0.533−0.588 x+ x2)(0.466+ 0.751 x+ x2)(0.670+ x)

Some other useful polynomial/rational functions in Scilab are

derivat, factors, numer, denom, simp_mode, clean, order

As always, see the help browser for more details.

7 References
1. http://www.ece.rice.edu/dsp/software/FVHDP/horner2.pdf (retrieved 2014-06-04)

8 Appendix – Fundamental theorem of algebra

p (z)=c1+ c2 z+ c3 z 2+⋯+ cn z n−1+ z n

z= r e jθ

zn=r n e j nθ

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 9/15

p (0)=c1

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 10/15

9 Appendix – Scilab code

9.1 Horner's method
0001 //
0002 // polyHorner.sci
0003 // 2014-06-04, Scott Hudson
0004 // Horner's method for polynomial evaluation. c=[c(1),c(2),...,c(n+1)]
0005 // are coefficients of polynomial
0006 // p(z) = c(1)+c(2)*z+c(3)*z^2+...+c(n+1)*z^n
0007 // z is the number (can be complex) at which to evaluate polynomial
0008 //
0009 function w=polyHorner(c, z)
0010 n = length(c)-1;
0011 w = c(n)+c(n+1)*z;
0012 for i=n-1:-1:1
0013 w = c(i)+w*z;
0014 end
0015 endfunction

9.2 Polynomial deflation
0001 //
0002 // polyDeflate.sci
0003 // 2014-06-04, Scott Hudson
0004 // Given the coefficients c = [c(1),c(2),...,c(n+1)] of polynomial
0005 // p(z) = c(1)+c(2)*z+c(3)*z^2+...+c(n+1)*z^n
0006 // and root r, p(r)=0, remove a factor of (z-r) from p(z) resulting in
0007 // q(z) = b(1)+b(2)*z+...+b(n)*z^(n-1) of order one less than p(z)
0008 // Return array of coefficients b = [b(1),b(2),...,b(n)]
0009 //
0010 function b=polyDeflate(c, r)
0011 n = length(c)-1;
0012 b = zeros(1,n);
0013 b(n) = c(n+1);
0014 for k=n-1:-1:1
0015 b(k) = c(k+1)+r*b(k+1);
0016 end
0017 endfunction

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 11/15

9.3 Polynomial root solver
0001 //
0002 // polyRoots.sci
0003 // 2014-06-04, Scott Hudson, for pedagocic purposes only!
0004 // Given an array of coefficients c=[c(1),c(2),...,c(n+1)]
0005 // defining a polynomial p(z) = c(1)+c(2)*z+...+c(n+1)*z^n
0006 // find the n roots using Newton's method (with complex arguments)
0007 // followed by polynomial deflation. The derivative polynomial is
0008 // b(1)+b(2)*z+b(3)*z^2+...+b(n)*z^(n-1) =
0009 // c(2)+2*c(3)*z+3*c(4)*z^2+...+n*c(n+1)*z^(n-1)
0010 //
0011 function r=polyRoots(c)
0012 n = length(c)-1; //order of polynomial
0013 b = zeros(1,n); //coefficients of polynomial derivative
0014 b = c(2:n+1).*(1:n); //b(k) = c(k+1)*k
0015 deff('y=f(z)','y=polyHorner(c,z)'); //f(x) for Newton method
0016 deff('y=fp(z)','y=polyHorner(b,z)'); //fp(x) for same
0017 r = zeros(n,1);
0018 z0 = 1+%i; //initial search point, should not be real
0019 for i=1:n-1
0020 r(i) = rootNewton(z0,f,fp,1e-8);
0021 c = polyDeflate(c,r(i));
0022 m = length(c)-1; //order of deflated polynomial
0023 b = c(2:m+1).*(1:m); //b(k) = c(k+1)*k
0024 end
0025 r(n) = -c(1)/c(2); //last root is solution of c(1)+c(2)*z=0
0026 endfunction

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 12/15

9.4 Polynomial root solver with root polishing
//
// polyRootsPolished.sci
// 2014-06-04, Scott Hudson, for pedagocic purposes
// Given an array of coefficients c=[c(1),c(2),...,c(n+1)]
// defining a polynomial p(z) = c(1)+c(2)*z+...+c(n+1)*z^n
// find the n roots using Newton's method (with complex arguments)
// followed by polynomial deflation. The derivative polynomial is
// b(1)+b(2)*z+b(3)*z^2+...+b(n)*z^(n-1) =
// c(2)+2*c(3)*z+3*c(4)*z^2+...+n*c(n+1)*z^(n-1)
// Each root is polished before deflation
//
function r=polyRootsPolished(c)
 n = length(c)-1; //order of polynomial
 b = zeros(1,n); //coefficients of polynomial derivative
 b = c(2:n+1).*(1:n); //b(k) = c(k+1)*k
 deff('y=f(z)','y=polyHorner(c,z)'); //f(x) for Newton method
 deff('y=fp(z)','y=polyHorner(b,z)');//fp(x) for same
 r = zeros(n,1);
 z0 = 1+%i; //initial search point, should not be real
 c0 = c; //save original coefficients for polishing
 b0 = b;
 deff('y=f0(z)','y=polyHorner(c0,z)'); //f(x) or orig. poly
 deff('y=fp0(z)','y=polyHorner(b0,z)');//fp(x) for same
 for i=1:n-1
 r(i) = rootNewton(z0,f,fp,1e-4);
 r(i) = rootNewton(r(i),f0,fp0,1e-8); //polish root using original poly
 c = polyDeflate(c,r(i));
 m = length(c)-1; //order of deflated polynomial
 b = c(2:m+1).*(1:m); //b(k) = c(k+1)*k
 end
 r(n) = -c(1)/c(2); //last root is solution of c(1)+c(2)*z=0
 r(n) = rootNewton(r(n),f0,fp0,1e-8); //polish root using original poly
endfunction

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 13/15

10 Appendix – Matlab code

10.1 Horner's method
%%
%% polyHorner.sci
%% 2014-06-04, Scott Hudson
%% Horner's method for polynomial evaluation. c=[c(1),c(2),...,c(n+1)]
%% are coefficients of polynomial
%% p(z) = c(1)+c(2)*z+c(3)*z^2+...+c(n+1)*z^n
%% z is the number (can be complex) at which to evaluate polynomial
%%
function w = polyHorner(c,z)
 n = length(c)-1;
 w = c(n)+c(n+1)*z;
 for i=n-1:-1:1
 w = c(i)+w*z;
 end
end

10.2 Polynomial deflation
%%
%% polyDeflate.sci
%% 2014-06-04, Scott Hudson
%% Given the coefficients c = [c(1),c(2),...,c(n+1)] of polynomial
%% p(z) = c(1)+c(2)*z+c(3)*z^2+...+c(n+1)*z^n
%% and root r, p(r)=0, remove a factor of (z-r) from p(z) resulting in
%% q(z) = b(1)+b(2)*z+...+b(n)*z^(n-1) of order one less than p(z)
%% Return array of coefficients b = [b(1),b(2),...,b(n)]
%%
function b = polyDeflate(c,r)
 n = length(c)-1;
 b = zeros(1,n);
 b(n) = c(n+1);
 for k=n-1:-1:1
 b(k) = c(k+1)+r*b(k+1);
 end
end

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 14/15

10.3 Polynomial root solver

%%
%% polyRoots.sci
%% 2014-06-04, Scott Hudson, for pedagocic purposes
%% Given an array of coefficients c=[c(1),c(2),...,c(n+1)]
%% defining a polynomial p(z) = c(1)+c(2)*z+...+c(n+1)*z^n
%% find the n roots using Newton's method (with complex arguments)
%% followed by polynomial deflation. The derivative polynomial is
%% b(1)+b(2)*z+b(3)*z^2+...+b(n)*z^(n-1) =
%% c(2)+2*c(3)*z+3*c(4)*z^2+...+n*c(n+1)*z^(n-1)
%%
function r = polyRoots(c)
 n = length(c)-1; %%order of polynomial
 b = zeros(1,n); %%coefficients of polynomial derivative
 b = c(2:n+1).*(1:n); %%b(k) = c(k+1)*k
 function y = f(z)
 y = polyHorner(c,z);
 end
 function y = fp(z)
 y = polyHorner(b,z);
 end
 r = zeros(n,1);
 z0 = 1+1i; %%initial search point, should not be real
 for i=1:n-1
 r(i) = rootNewton(z0,@f,@fp,1e-8);
 c = polyDeflate(c,r(i));
 m = length(c)-1; %%order of deflated polynomial
 b = c(2:m+1).*(1:m); %%b(k) = c(k+1)*k
 end
 r(n) = -c(1)/c(2); %%last root is solution of c(1)+c(2)*z=0
end

EE 221 Numerical Computing Scott Hudson 2018-09-19

Lecture 9: Polynomials 15/15

10.4 Polynomial root solver with root polishing
%%
%% polyRootsPolished.sci
%% 2014-06-04, Scott Hudson, for pedagocic purposes
%% Given an array of coefficients c=[c(1),c(2),...,c(n+1)]
%% defining a polynomial p(z) = c(1)+c(2)*z+...+c(n+1)*z^n
%% find the n roots using Newton's method (with complex arguments)
%% followed by polynomial deflation. The derivative polynomial is
%% b(1)+b(2)*z+b(3)*z^2+...+b(n)*z^(n-1) =
%% c(2)+2*c(3)*z+3*c(4)*z^2+...+n*c(n+1)*z^(n-1)
%% Each root is polished before deflation
%%
function r = polyRootsPolished(c)
 n = length(c)-1; %%order of polynomial
 b = zeros(1,n); %%coefficients of polynomial derivative
 b = c(2:n+1).*(1:n); %%b(k) = c(k+1)*k
 function y = f(z)
 y = polyHorner(c,z);
 end
 function y = fp(z)
 y = polyHorner(b,z);
 end
 r = zeros(n,1);
 z0 = 1+1i; %%initial search point, should not be real
 c0 = c; %%save original coefficients for polishing
 b0 = b;
 function y = f0(z)
 y = polyHorner(c0,z);
 end
 function y = fp0(z)
 y = polyHorner(b0,z);
 end
 for i=1:n-1
 r(i) = rootNewton(z0,@f,@fp,1e-4);
 r(i) = rootNewton(r(i),@f0,@fp0,1e-8); %%polish root using original poly
 c = polyDeflate(c,r(i));
 m = length(c)-1; %%order of deflated polynomial
 b = c(2:m+1).*(1:m); %%b(k) = c(k+1)*k
 end
 r(n) = -c(1)/c(2); %%last root is solution of c(1)+c(2)*z=0
 r(n) = rootNewton(r(n),@f0,@fp0,1e-8); %%polish root using original poly
end

EE 221 Numerical Computing Scott Hudson 2018-09-19

	1 Introduction
	2 Manipulating polynomials in Scilab
	3 Factoring and deflation
	4 Horner's method
	5 Finding the roots of a polynomial
	5.1 Polishing the roots

	6 The roots function
	7 References
	8 Appendix – Fundamental theorem of algebra
	9 Appendix – Scilab code
	9.1 Horner's method
	9.2 Polynomial deflation
	9.3 Polynomial root solver
	9.4 Polynomial root solver with root polishing

	10 Appendix – Matlab code
	10.1 Horner's method
	10.2 Polynomial deflation
	10.3 Polynomial root solver
	10.4 Polynomial root solver with root polishing

