
Lecture 8
Root finding II

1 Introduction
In the previous lecture we considered the bisection root-bracketing algorithm. It requires only
that the function be continuous and that we have a root bracketed to start. Under those conditions
it is guaranteed to converge with error

ϵk=(1
2)

k

ϵ0

at the kth iteration. Thus bisection provides linear convergence with a rate of convergence of 1/2.
Because of its general applicability and guaranteed convergence, bisection has much to
recommend it.

We also studied fixed-point iteration

xk +1=g (xk)= xk+a f (xk)

where a is a constant. We found that provided we start out “close enough” to a root r the method
converges linearly with error

ϵk=[g ′(r)]
k

ϵ0 (1)

As this is a root-polishing algorithm, it does not require an initial root bracketing, which might be
considered a plus. Still, for one-dimensional functions f (x) , fixed-point iteration is not an
attractive algorithm. It provides the same linear convergence as bisection without any guarantee
of finding a root, even if one exists. However, it can be useful for multidimensional problems.

What we want to investigate here is the tantalizing prospect suggested by g
′
(r)=0 which in

light of (1) suggests “superlinear” convergence of some sort.

2 Newton's method

To achieve g
′
(r)=1+a f

′
(r)=0 we take

a=−
1

f
′
(r)

to arrive at the root polishing iteration formula

xk +1=xk−
f (xk)

f
′
(r)

The only problem is that to compute f
′
(r) we'd need to know r, and that's what we are

searching for in the first place. But if we are “close” to the root, so that f
′
(x k)≈ f

′
(r) , then it

makes sense to use

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 8: Root finding II 2/10

xk +1=xk−
f (xk)

f
′
(xk)

Let's derive this formula another way. If f (x) is continuous and differentiable, then for small
changes in x, f (x) is well approximated by a first-order Taylor series. If we expand the Taylor
series about the point x= xk and take xk +1=xk+h then, assuming h is “small,” we can write

f (xk+h)= f (xk+1)≈ f (xk)+ f
′
(xk)h=0

and solve for

h=−
f (xk)

f
′
(xk)

This gives us the formula

xk +1=xk−
f (x k)

f
′
(x k)

(2)

which is called Newton's method. In Newton's method we “model” the function by the tangent
line at the current point (xk , f (xk)) . The root of the tangent line is our next estimate of the root
of f (x) (Fig. 1).

Taking xk=r+ϵk and assuming the error ϵk is small enough that the 2nd order Taylor series

f (x)≈ f (r)+ f
′
(r)ϵ+

1
2

f
′′
(r)ϵ2

= f
′
(r)ϵ+

1
2

f
′′
(r)ϵ2

is accurate, it's straight-forward (but a bit messy) to show that Newton's method converges
quadratically with

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1: Newton's method.

Lecture 8: Root finding II 3/10

ϵk+1=
1
2

f
′′
(r)

f
′
(r)

ϵk
2

Example: Let's take

f (x)=x2
−2=0

Since f
′
(x)=2 x , Newton's method gives the iteration formula

xk +1=xk−
xk

2
−2

2 xk

Let's start at x0=1 . Four iterations produce the sequence of numbers

1.5 ,1.4166667 ,1.4142157 ,1.4142136

This is very rapid convergence toward the root √2=1.4142136… . In fact the
final value (as stored in the computer) turns out to be accurate to about 11
decimal places.

A Scilab implementation of Newton's is given in the Appendix. We require two functions as

arguments: f (x) and f
′
(x) . Newton's method fails if f

′
(xk)=0 and more generally performs

poorly if ∣ f
′
(xk)∣ is very small. It can also fail if we start far away from a root.

With root-bracketing methods, such as bisection, we know that the error in our root estimate is
less than or equal to half the last bracketing interval. This gives us a clear termination condition ;
we stop when the maximum possible error is less than some defined tolerance. With root-
polishing methods, such as Newton's method, we don't have any rigorous bound on the error in
our root. Deciding when to stop iterating involves some guess work. A simple criterion is

∣xk−xk −1∣≤ tol (3)

that is, we terminate when the change in root estimates is less than some specified tolerance. This
is a reasonable way to estimate the actual uncertainty in our root estimate, but keep in mind that
it is not a rigorous bound on the actual error, as is the case with bisection. Since Newton's
method is not guaranteed to converge – it may just “bounce around” for ever – it is a good idea to
also terminate if the number of iterations exceeds some maximum value.

It's natural to look for methods that converge with order q=3,4,… . Householder's method
generalizes Newton's method to higher orders. The q=3 version is called Halley's method. It

requires calculation of f (xk) , f
′
(xk) , f

′′
(xk) at every step. The higher-order methods likewise

require ever higher-order derivatives to be calculated. For practical purposes, the increased order
of convergence is more than offset by the added calculations and complexity. One application
where this is not necessarily the case is polynomials. It is very easy to calculate a polynomial's
derivatives of all orders, and higher-order methods do find application in polynomial root
finding.

If started “close enough” to a simple root Newton's method generally performs very well and is
the “method of choice” in many applications. It does, however, require that we compute both

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 8: Root finding II 4/10

f (x) and f
′
(x) at each iteration. In some cases it may not be possible or practical to compute

f
′
(x) explicitly. We would like a method that gives us the rapid convergence of Newton's

method without the need of calculating derivatives.

3 Secant method
In the secant method we replace the derivative appearing in Newton's method by the
approximation

f
′
(xk)≈

f (xk)− f (xk−1)

xk− xk−1

Substituting this into (2) results in

xk +1=xk− f (xk)
xk−xk −1

f (x k)− f (xk −1)
(4)

Another way to view the secant method is as follows. Suppose we have evaluated the function at
two points (xk , f k= f (xk)) and (xk −1 , f k−1= f (xk−1)) . Through these two points we can draw
a line, the formula for which is

y= f k+
f k− f k−1

xk− xk−1

(x−xk)

Setting this formula equal to zero and solving for x we obtain (4). In the secant method we model
the function f (x) by a line through our last two root estimates (Fig. 2). Solving for the root of
that line provides our next estimate.

When the secant method works it converges with order q≈1.6 , superlinear but not quadratic.
Comparison of Figs. 1 and 2 suggest why this is. The secant method will tend to underestimate or

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 2: Secant method

Lecture 8: Root finding II 5/10

overestimate (depending on the 2nd derivative of the function at r) the actual slope at the point
. We are effectively using an average of the slopes at (xk , f (xk)) and

(xk −1 , f (xk−1)) whereas we use the true slope at (xk , f (xk)) in Newton's method. It can be
shown [2] that the secant method converges as

ϵk+1=
1
2

f
′′
(r)

f
′
(r)

ϵk ϵk−1

or

∣ϵk +1∣≈∣12 f
′′
(r)

f
′
(r)∣

0.618

∣ϵk∣
1.618

so the secant method is of order q≈1.6 , which is superlinear but less than quadratic. A Scilab
implementation of the secant method is given in the appendix.

As is so often the case with numerical methods we are presented a trade off. The secant method
does not require explicit calculation of derivatives while Newton's method does. But, the secant
method does not converge as fast as Newton's method. As with all root-polishing methods,
deciding when to stop iterating involves some guess work. Criterion (3) is an obvious choice.

As illustrated in Fig. 3, the secant method can fail, even when starting out with a bracketed root.
There we start with points 1 and 2 on the curve. The line through those points crosses the x axis
at s. The corresponding point on the curve is point 3. Now we draw a line through points 2 and 3.
This gives the root estimate t. The corresponding point on the curve is point 4. We are actually
moving away from the root.

In the case illustrated points 1 and 2 bracket a root while points 2 and 3 do not. Clearly if we
have a root bracketed we should never accept a new root estimate that falls outside that bracket.
The false position method is a variation of the secant method in which we use the last two points

EE 221 Numerical Computing Scott Hudson 2015-08-18

 Fig. 3: Failure of the secant method

Lecture 8: Root finding II 6/10

which bracket a root to represent our linear approximation. In that case we would have drawn a
line between point 3 and point 1. Of course, as in the bisection method, this would require us to
start with a bracketed root. Moreover in cases where both methods would converge the false
position method does not converge as fast as the secant method.

4 Inverse quadratic interpolation
Given two points on a curve (xk , f k) and (xk −1 , f k−1) the secant method approximates the
function by a line y= f (x)≈c1+c2 x (Fig. 2). This suggests that if we have a third point
(xk −2 , f k −2) we might draw a parabola through the three points to obtain a quadratic
approximation to the function. Setting that approximation equal to zero

y= f (x)≈c1+c2 x+c3 x2
=0

might provide a better root approximation than the secant method. Unfortunately we would have
to solve a quadratic equation in this case. An alternative approach is inverse quadratic
interpolation where we represent x as a quadratic function of y

x= f −1
(y)=c1+c2 y+c3 y2

Setting y= f (x)=0 we simply have x=c1 (Fig. 4). It turns out there is an explicit formula for
this value

x=
x1 f 2 f 3

(f 1− f 2)(f 1− f 3)
+

x2 f 3 f 1

(f 2− f 3)(f 2− f 1)
+

x3 f 1 f 2

(f 3− f 1)(f 3− f 2)

(We will understand this formula when we study Lagrange interpolation.) Inverse quadratic

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 4: Inverse quadratic interpolation. Solid line is the function. Dotted
line is x represented as a quadratic function of y passing through three
given points on the curve.

Lecture 8: Root finding II 7/10

interpolation allows us to exploit information about both the first derivative (slope) and second
derivative (curvature) of the function.

Like the secant method, inverse quadratic interpolation can also fail. But when it works it
converges with order q≈1.8 . Still not as rapid as Newton's method, but it does not require
evaluation of derivatives. It converges faster than the secant method (q≈1.6) but at the cost of
more bookkeeping and a more complicated recursion formula.

5 Hybrid methods
In general, numerical root finding is a difficult problem. We are presented with various trade
offs, such as that between the guaranteed converge of the bisection method and the faster
convergence of the Newton, secant or inverse quadratic methods. Consequently people have
developed hybrid methods that seek to combine the best of two or more simpler methods. One of
the most widely used is Brent's method [1] (used in the Matlab fzero function). This method
combines the bisection, secant and inverse quadratic methods. Brent's method starts off with a
bracketed root. If we don't have a bracket then we have to search for one. With those two initial
points, Brent's method applies the secant method to get a third point. From there it tries to use
inverse quadratic interpolation for rapid convergence, but applies tests at each iteration to see if it
is actually converging superlinearly. If not, Brent's method falls back to the slow-but-sure
bisection method. At the next iteration it again tries inverse quadratic interpolation. Another
example is Powell's hybrid method. (used in the Scilab fsolve function).

There is no single agreed-upon “one size fits all” algorithm for root finding. Hybrid methods seek
to use the fastest algorithm that “seems to be working” with the option to fall back to slower, but
surer methods as a backup. These methods are recommended for most root-finding applications.
However there may be specific applications where a particular method will be superior. Newton's

method is hard to beat if it is possible to directly calculate both f (x) and f
′
(x) and a

reasonably accurate initial guess to a root is available. It can be coded very compactly, so it's easy
to incorporate directly into a program.

6 The fsolve command (Scilab)
As with nearly all non-trivial numerical algorithms, Scilab employs state-of-the-art methods
developed by numerical computation researchers in it's library of functions. For solving
f (x)=0 Scilab provides the fsolve function. The simplest use of this is

r = fsolve(x0,f);

Here x0 is an initial guess at a root of the function f(x). The returned value r is the estimated
root. For example

-->deff('y=f(x)','y=cos(x)');

-->r = fsolve(1,f)
 r =

 1.5707963

The Matlab equivalent is called fzero, although it has a slightly different syntax. Note,
however, that fsolve may fail to find a root but may still return a value r. For example

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 8: Root finding II 8/10

-->deff('y=f(x)','y=2+cos(x)');

-->r = fsolve(1,f)
 r =

 3.1418148

The function 2+cos (x) is never 0 yet Scilab returned a value for r. This value is actually where
the function gets closest to the x axis; it's where ∣ f (x)∣ is a minimum. Therefore, you should
always check the value of the function at the reported “root.” Running the command using the
syntax

[r,fr] = fsolve(x0,f);

returns the value of the function at r, fr=f(r). For example

-->[r,fr] = fsolve(1,f)
 fr =

 1.
 r =

 3.1418148

shows us that r is not actually a root since f (r)=1 . On the other hand

-->deff('y=f(x)','y=0.5+cos(x)');

-->[r,fr] = fsolve(1,f)
 fr =
 2.220D-16
 r =
 2.0943951

makes it clear that r is a root in this case. By default, fsolve tries to find the root to within an
estimated tolerance of 10−10 . You can specify the tolerance explicitly as in

[r,fr] = fsolve(x0,f,tol);

Because of limitations due to round-off error it is not recommended to use a smaller tolerance
than the default. There may be situations where you don't need much accuracy and using a larger
tolerance might save a few function calls.

7 References
1. Brent, Richard P. Algorithms for Minimization Without Derivatives. Dover Publications.

Kindle edition. ASIN: B00CRW5ZTK. 2013 (Originally published 1973)

2. http://www.math.drexel.edu/~tolya/300_secant.pdf

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 8: Root finding II 9/10

8 Appendix – Scilab code

8.1 Newton's method
0001 //
0002 // rootNewton.sci
0003 // 2014-06-04, Scott Hudson
0004 // Implements Newton's method for finding a root f(x) = 0.
0005 // Requires two functions: y=f(x) and y=fp(x) where fp(x) is
0006 // the derivative of f(x). Search starts at x0. Root is returned as r.
0007 //
0008 function r=rootNewton(x0, f, fp, tol)
0009 MAX_ITERS = 40; //give up after this many iterations
0010 nIters = 1; //1st iteration
0011 r = x0-f(x0)/fp(x0); //Newton's formula for next root estimate
0012 while (abs(r-x0)>tol) & (nIters<=MAX_ITERS)
0013 nIters = nIters+1; //keep track of # of iterations
0014 x0 = r; //current root estimate is last output of formula
0015 r = x0-f(x0)/fp(x0); //Newton's formula for next root estimate
0016 end
0017 endfunction

8.2 Secant method
0001 //
0002 // rootSecant.sci
0003 // 2014-06-04, Scott Hudson
0004 // Implements secant method for finding a root f(x) = 0.
0005 // Requires two initial x values: x1 and x2. Root is returned as r
0006 // accurate to (hopefully) about tol.
0007 //
0008 function r=rootSecant(x1, x2, f, tol)
0009 MAX_ITERS = 40; //maximum number of iterations allowed
0010 nIters = 1; //1st iteration
0011 fx2 = f(x2);
0012 r = x2-fx2*(x2-x1)/(fx2-f(x1));
0013 while (abs(r-x2)>tol) & (nIters<=MAX_ITERS)
0014 nIters = nIters+1;
0015 x1 = x2;
0016 fx1 = fx2;
0017 x2 = r;
0018 fx2 = f(x2);
0019 r = x2-fx2*(x2-x1)/(fx2-fx1);
0020 end
0021 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 8: Root finding II 10/10

9 Appendix – Matlab code

9.1 Newton's method
%%
%% rootNewton.m
%% 2014-06-04, Scott Hudson
%% Implements Newton's method for finding a root f(x) = 0.
%% Requires two functions: y=f(x) and y=fp(x) where fp(x) is
%% the derivative of f(x). Search starts at x0. Root is returned as r.
%%
function r = rootNewton(x0,f,fp,tol)
 MAX_ITERS = 40; %%give up after this many iterations
 nIters = 1; %%1st iteration
 r = x0-f(x0)/fp(x0); %%Newton's formula for next root estimate
 while (abs(r-x0)>tol) & (nIters<=MAX_ITERS)
 nIters = nIters+1; %%keep track of # of iterations
 x0 = r; %%current root estimate is last output of formula
 r = x0-f(x0)/fp(x0); %%Newton's formula for next root estimate
 end
end

9.2 Secant method
%%
%% rootSecant.m
%% 2014-06-04, Scott Hudson
%% Implements secant method for finding a root f(x) = 0.
%% Requires two initial x values: x1 and x2. Root is returned as r
%% accurate to (hopefully) about tol.
%%
function r = rootSecant(x1,x2,f,tol)
 MAX_ITERS = 40; %%maximum number of iterations allowed
 nIters = 1; %%1st iteration
 fx2 = f(x2);
 r = x2-fx2*(x2-x1)/(fx2-f(x1));
 while (abs(r-x2)>tol) & (nIters<=MAX_ITERS)
 nIters = nIters+1;
 x1 = x2;
 fx1 = fx2;
 x2 = r;
 fx2 = f(x2);
 r = x2-fx2*(x2-x1)/(fx2-fx1);
 end
end

EE 221 Numerical Computing Scott Hudson 2015-08-18

	1 Introduction
	2 Newton's method
	3 Secant method
	4 Inverse quadratic interpolation
	5 Hybrid methods
	6 The fsolve command (Scilab)
	7 References
	8 Appendix – Scilab code
	8.1 Newton's method
	8.2 Secant method

	9 Appendix – Matlab code
	9.1 Newton's method
	9.2 Secant method

