
Lecture 7
Root finding I

1 Introduction
For our present purposes, root finding is the process of finding a real value of x which solves
the equation f (x)=0 . Since the equation g x=hx can be rewritten as
f x =g x−hx =0 , this encompasses the solution of any single equation in a single

unknown. Ideally we would want to know how many roots exist and what their values are. In
some cases, such as for polynomials, there are theoretical results for the number of roots (some of
which might be complex) and we have clues about what we are looking for. However, for an
arbitrary function f (x) there is not much we can say. Our equation may have no real roots, for
example 1+e−x

=0 , or, as in the case of sin(x)=0 with roots x=nπ , n=0,±1,±2,… , there
may be an infinite number of roots. We will limit our scope to finding one root – any root. If we
fail to find a root it will not mean that the function has no roots, just that our algorithm was
unable to find one.

To have any hope of solving the problem we need to make basic assumptions about f (x) that
allow us to know if an interval contains a root, if we are “close” to a root, or in what direction
(left or right) along the x axis a root might lie. At a minimum we will have to assume that our
function is continuous. Intuitively, a continuous function is one that can be plotted “without
lifting pen from paper,” while the plot of a discontinuous function has “breaks.” Formally a
function f (x) is continuous at x=c if for any ϵ>0 there exists a δ>0 such that

|x−c|<δ| f (x)− f (c)|<ϵ

If f (x) is continuous at all points in some interval a≤ x≤b then it is continuous over that
interval. Continuity allows us to assume that a small change in x results in a small change in
f (x) . It also allows us to know that if f (a)>0 , f (b)<0 then there is some x in the interval
(a ,b) such that f (x)=0 , because a continuous curve cannot go from above the x axis to
below without crossing the x axis.

In some cases we will also assume that f (x) is differentiable, meaning the limit

f
′
(x)=lim

δ→0

f (x+δ)− f (x)
δ

exists for all x of interest. This allows us to approximate the function by the line

f (x+δ)≈ f (x)+f
′
(x)δ over at least a small range of x values.

2 Graphical solution
The easiest and most intuitive way to solve f (x)=0 is to simply plot the function and zoom in
on the region where the graph crosses the x axis. For example, say we want to find the first root
of cos (x)=0 for x≥0 . We could run the command

x = 0:0.01:3;
y = cos(x);
plot(x,y);

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 2/12

xgrid; //short-hand way to add a grid in Scilab (grid in Matlab)

to get the plot shown in Fig. 1. We can see that there is a root in the interval 1.5≤x≤1.6 . We
then use the magnifying lens tool (Fig. 2) to zoom in on the root and get the plot shown in Fig. 3.
From this we can read off the root to three decimal places as

x=1.571

This approach is easy and intuitive. We can readily search for multiple roots by plotting different
ranges of x. However, in many situations we need an automated way to find roots. Scilab (and
Matlab) have built in functions to do this, and we will learn how to use those tools. But, in order
to understand what those functions are doing, and what limitations they may have, we need to
study root-finding algorithms. We start with one of the most basic algorithms called bisection.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 1: Plot of cos(x)

Fig. 2: Zoom tool

Lecture 7: Root finding I 3/12

3 Bisection
If the product of two numbers is negative then one of the numbers must be positive and the other
must be negative. Therefore, if f (x) is continuous over an interval a≤ x≤b , and if
f (a) f (b)<0 then f (x) is positive at one end of the interval and negative at the other end.

Since f (x) is continuous we can conclude that f (r)=0 for some r in the interior of the
interval, because you cannot draw a continuous curve from a positive value of f (x) to a
negative value of f (x) , or vice versa, without passing through f (x)=0 . This is the basis of
the bisection method, illustrated in Fig. 4.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 3: Zooming in on the root

Fig. 4: Bisection

Lecture 7: Root finding I 4/12

If f (a) f (b)<0 then we can estimate the root by the interval's midpoint with an uncertainty of
half the length of the interval, that is, r=(b+a)/2±(b−a)/2 . To reduce the uncertainty by half
we evaluate the function at the midpoint x=(b+a)/2 . If f (x) , f (a) have the same sign (as in
the case illustrated in Fig. 4) we set a= x . If f (x) , f (b) have the same sign we set b=x . In
the (very unlikely) event that f (x)=0 then r=x is the root. In either of the first two cases we
have “bisected” the interval a≤x≤b into an interval half the original size. We then simply
repeat this process until the uncertainty |b−a| /2 is smaller than desired. This method is simple
and guaranteed to work for any continuous function. The algorithm can be represented as follows

Bisection algorithm

 repeat until |b−a|/2 is smaller than tol

 set x = midpoint of interval (a ,b)

 if f (x) has the same sign as f (a) then set a= x

 else if f (x) has the same sign as f (b) then set b=x

 else f (x) is zero and we've found the root!

Function rootBisection in the Appendix implements the bisection algorithm.

3.1 Bracketing a root

To start the bisection algorithm we need two values x=a , b such that f (a) f (b)<0 . We say
that a and b bracket a root, meaning a root is guaranteed to lie in the interval (a ,b) . How do we
bracket a root in the first place? In an interactive session a plot of f (x) allows you to quickly
spot values which bracket a root. In Fig. 1 we immediately see that a=1.4 , b=1.6 bracket a
root.

In some cases a bracketing interval might be obvious from the form of the function. As an
example, a problem that comes up in fiber optics is the solution of an equation of the form
f (x)=√1−x2− tan(ax)=0 for x≥0 . Since f (0)=1>0 and f (x→π/(2 a))→−∞ we know

that the interval (0,π /(2a)) must bracket a root.

In general there is no sure-fire method for bracketing a root, even if a root exists. Fig. 5 is an
example of a function with roots that would be difficult to find unless we happened to start
searching near x=0 .

One approach to getting started is a grid search. Let xmin<x< xmax be an interval in which we
believe one or more roots f (x)=0 might exist. Let Δx be the smallest scale at which we think
the function is likely to change significantly (in Fig. 5 this might be Δx≈0.1 . Our search grid is
then (xmin , xmin+Δx , xmin+2Δx ,… , xmax) . We search the grid by calculating f (x) at each grid
point. Any time we observe a sign change we have found a new root.

Grid searching is a non-interactive version of the “plot and see” method and it has the same pros
and cons. On the “pro” side, it will work even with “hidden roots” (as in Fig. 5), and it (ideally)
allows us to identify all roots in a prescribed interval. On the “con” side, it requires many
function evaluations. If the function is “costly” to evaluate, or if the root finding operation is in a

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 5/12

loop that will be repeated many times, then a grid search is not likely to be practical.

Another way to approach root bracketing is to start at an arbitrary value x=a with some step
size h. We then move along the x axis such that ∣ f (x)∣ is decreasing (that is, we are moving
towards y=0) until we find a bracket interval (a ,b) . If ∣ f (x)∣ starts to increase before we
find a bracket then we give up. Increasing the step size at each iteration protects us from getting
into a situation where we are “inching along” a function that has a far-away zero. Function
rootBracket in the Appendix implements this idea.

3.2 Convergence

The uncertainty in the root, the maximum error in our bisection estimate, is ϵ=∣b−a∣/2 . This
decreases by a factor of ½ with each bisection. Therefore the relationship between the error at
step k and step k+1 is

ϵk+1=
1
2
ϵk (1)

More generally we might have an error ϵ=∣x−r∣ that decreases as

ϵk+1≈αϵk
q (2)

The exponent q is called the order of convergence. If q=1 , as it is for bisection, we say the
convergence is linear, and we call α the rate of convergence. For q>1 the convergence is said
to be superlinear, and specifically, if q=2 the convergence is quadratic. For superlinear
convergence α is called the asymptotic error constant.

From (1) and (2) we see that bisection converges linearly with a rate of convergence of ½. If the
initial error is ϵ0 then after k iterations we have

EE 221 Numerical Computing Scott Hudson 2015-08-18

Fig. 5: A difficult root-finding problem

Lecture 7: Root finding I 6/12

ϵk=ϵ0(1
2)

k

In order to add one decimal digit of accuracy we need to decrease the error by a factor of 1/10. To
increase accuracy by n digits we require

(1
2)

k

=
1

10n

Solving for k we find

k=
n

log 2
=3.32n

It takes k≈10 iterations to add n=3 digits of accuracy. All linearly converging root finding
algorithms have the characteristic that each additional digit of accuracy requires a given number
of algorithm iterations.

Now consider a quadratically convergent method with

ϵk+1=ϵk
2

Suppose ϵ0=0.1 , so we start with one decimal place of accuracy. Then

ϵ1=0.01 , ϵ2=0.0001 , ϵ3=0.00000001 , ϵ4=0.0000000000000001

The first iteration adds one decimal place of accuracy. The second adds two decimal places. The
third adds four and the fourth adds eight. This “runaway” increase in accuracy is what motivates
us to explore other root-finding algorithms.

4 Fixed-point iteration
The goal of root finding is to arrive at x=r where f (r)=0 . Now consider the following three
equations

0= f (x)

0=a f (x)
x=x+a f (x)

Multiplying the first equation through by a produces the second equation. Adding x to both sides
of the second equation produces the third. All three will have the same roots, provided a≠0 .
Now let's define a new function

g (x)=x+a f (x)

Then our root-finding problem can be written

x=g (x)

the solution of which is

r=g (r)

What's attractive about this is that it has the form “x equals something,” which is almost an
explicit formula for x. The problem is that the “something” itself depends on x. So let's imagine
starting with a guess for the root x=x0 . We might expect that x1=g (x0) would be an improved

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 7/12

guess. We could continue iterating as many times as desired

x1=g (x0) , x2=g (x1) , … , xk+1=g (xk)

Our hope is that this converges with xk r as k ∞ . Writing

xk=r+ϵk

ϵk is the error in the kth root estimate. Suppose that the error is small enough that the 1st order
Taylor series

g (r+ϵ)≈g (r)+g
′
(r)ϵ=r+g

′
(r)ϵ

is accurate. Then

r+ϵk+1=r+g
′
(r)ϵk

and

ϵk+1=g
′
(r)ϵk

It follows that

ϵk=[g ′(r)]
k

ϵ0 (3)

Comparing (3) to (2) we see that provided

α=∣g′ (r)∣<1 (4)

fixed-point iteration converges linearly with rate of convergence α . The value r is said to be a
“fixed point” of the iteration since the iteration stays “fixed” at r=g (r) . Condition (4) requires

|1+a f
′
(r)|<1

Provided f
′
(r)≠0 we can always find a value a satisfying this condition.

Fixed-point iteration

 Set g (x)= x+a f (x) for some choice of a

 From initial root estimate x0

 iterate until |xn+1− xn|<tol

 xn+1=g (xn)

 if iteration diverges, select another value of a

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 8/12

Example: Suppose we wish to solve

f (x)=x2−2=0

By inspection the roots are ±√2 . Let

g (x)=x+ f (x)= x+x2
−2

Since

g
′
(√2)=1+2√2>1

we expect that fixed point iteration will fail. Starting very close to a root with
x=1.4 . iteration gives the sequence of values

1.36 ,1.2096 , 0.6727322 ,−0.8746993 ,−2.1096004

which is clearly moving away from the root. On the other hand taking

g (x)=x−0.25 f (x)= x−0.25(x2
−2)

for which

g
′
(√2)=0.293

we get the sequence of values

1.412975 , 1.4138504 ,1.4141072 , 1.4141824 ,1.4142044 , 1.4142109

which is converging to √2=1.4142136 .

Interestingly, if f
′
(r)≠0 we have

α=|g′(r)|=|1+a f
′
(r)|=0

Solving for a

a=−
1

f
′
(r)

(5)

It seems we might achieve superlinear convergence for this choice of a. This is one way to
motivate Newton's method which we cover in the next lecture.

4.1 Root bracketing vs. root polishing

In the vocabulary of numerical analysis, a method like bisection which starts with and always
maintains a root bracket (a ,b) is called a “root bracketing” method. A technique such as fixed-
point iteration which starts at some value x0 and generates a sequence x1 , x2 , x3 ,… , xk is
called a “root polishing” method. Root bracketing has the advantages that the existence of a
bracket guarantees (for a continuous function) the existence of a root within that bracket, and the
error in taking the midpoint of the bracketing interval as the root is guaranteed to be no more
than half the width of the interval. The price we pay for these guarantees is that we have to have a
root bracketed from the start. Root polishing has the advantage that we don't need a root bracket
to start, just a single value of x. On the down side root polishing techniques are not guaranteed to
converge to a root, even if we start off near one, and they don't give us a rigorous bound on the
error in the value of a root if we do.

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 9/12

5 Appendix – Scilab code
0001 //
0002 // rootBisection.sci
0003 // 2014-06-04, Scott Hudson, for pedagogic purposes
0004 // Implements bisection method for finding a root f(x) = 0.
0005 // Requires a and b to bracket a root, f(a)*f(b)<0.
0006 // Returns root as r with maximum error tol.
0007 //
0008 function r=rootBisection(a, b, f, tol)
0009 fa = f(a);
0010 fb = f(b);
0011 if (fa*fb>=0) //make sure a,b bracket a root
0012 error('rootBisection: fa*fb>=0');
0013 end
0014 while (abs(b-a)/2>tol) //stop when error in root < tol
0015 x = (a+b)/2; //midpoint of interval
0016 fx = f(x);
0017 if (sign(fx)==sign(fa)) //r is in (x,b)
0018 a = x; //move a to x
0019 fa = fx;
0020 elseif (sign(fx)==sign(fb)) //r is in (a,x)
0021 b = x; //move b to x
0022 fb = fx;
0023 else //unlikely case that fx==0, sign(fx)==0, we found the root
0024 a = x; //shrink interval to zero width a=b=x
0025 b = x;
0026 end
0027 end
0028 r = (a+b)/2; //midpoint of last bracket interval is root estimate
0029 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 10/12

0001 //
0002 // rootBracket.sci
0003 // 2014-06-04, Scott Hudson, for pedagogic purposes
0004 // Given a function f(x), starting point x=x0 and a stepsize h
0005 // search for a and b such that f(x) changes sign over [a,b] hence
0006 // bracketing a root.
0007 //
0008 function [a, b]=rootBracket(f, x0, h)
0009 a = x0;
0010 fa = f(a);
0011 b = a+h;
0012 fb = f(b);
0013 done = (sign(fa)~=sign(fb)); //if the signs differ we're done
0014 if (~done) //if we don't have a bracket
0015 if (abs(fb)>abs(fa)) //see if a->b is moving away from x axis
0016 h = -h; //if so step in the other direction
0017 b = a; //and we will start from a instead of b
0018 fb = fa;
0019 end
0020 end
0021 while (~done)
0022 a = b; //take another step
0023 fa = fb;
0024 h = 2*h; //take bigger steps each time
0025 b = a+h;
0026 fb = f(b);
0027 done = (sign(fa)~=sign(fb));
0028 if ((abs(fb)>abs(fa))&(~done)) //we're now going uphill, give up
0029 error("rootBracket: cannot find a bracket\n");
0030 end
0031 end
0032 endfunction

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 11/12

6 Appendix – Matlab code
%%
%% rootBisection.m
%% 2014-06-04, Scott Hudson, for pedagogic purposes
%% Implements bisection method for finding a root f(x) = 0.
%% Requires a and b to bracket a root, f(a)*f(b)<0.
%% Returns root as r with maximum error tol.
%%
function r = rootBisection(a,b,f,tol)
 fa = f(a);
 fb = f(b);
 if (fa*fb>=0) %%make sure a,b bracket a root
 error('rootBisection: fa*fb>=0');
 end
 while (abs(b-a)/2>tol) %%stop when error in root < tol
 x = (a+b)/2; %%midpoint of interval
 fx = f(x);
 if (sign(fx)==sign(fa)) %%r is in (x,b)
 a = x; %%move a to x
 fa = fx;
 elseif (sign(fx)==sign(fb)) %%r is in (a,x)
 b = x; %%move b to x
 fb = fx;
 else %%unlikely case that fx==0, sign(fx)==0, we found the root
 a = x; %%shrink interval to zero width a=b=x
 b = x;
 end
 end
 r = (a+b)/2; %%midpoint of last bracket interval is root estimate
end

EE 221 Numerical Computing Scott Hudson 2015-08-18

Lecture 7: Root finding I 12/12

%%
%% rootBracket.m
%% 2014-06-04, Scott Hudson, for pedagogic purposes
%% Given a function f(x), starting point x=x0 and a stepsize h
%% search for a and b such that f(x) changes sign over [a,b] hence
%% bracketing a root.
%%
function [a,b] = rootBracket(f,x0,h)
 a = x0;
 fa = f(a);
 b = a+h;
 fb = f(b);
 done = (sign(fa)~=sign(fb)); %%if the signs differ we're done
 if (~done) %%if we don't have a bracket
 if (abs(fb)>abs(fa)) %%see if a->b is moving away from x axis
 h = -h; %%if so step in the other direction
 b = a; %%and we will start from a instead of b
 fb = fa;
 end
 end
 while (~done)
 a = b; %%take another step
 fa = fb;
 h = 2*h; %%take bigger steps each time
 b = a+h;
 fb = f(b);
 done = (sign(fa)~=sign(fb));
 if ((abs(fb)>abs(fa))&(~done)) %%we're now going uphill, give up
 error('rootBracket: cannot find a bracket');
 end
 end
end

EE 221 Numerical Computing Scott Hudson 2015-08-18

	1 Introduction
	2 Graphical solution
	3 Bisection
	3.1 Bracketing a root
	3.2 Convergence

	4 Fixed-point iteration
	4.1 Root bracketing vs. root polishing

	5 Appendix – Scilab code
	6 Appendix – Matlab code

