
Lecture 6
3D plots and animation

1 Introduction
The majority of graphing tasks we face are typically two-dimensional functions of the form
y= f (x) . However, not all functions have a single “input” and a single “output.” The motion of

a particle through space is described by vector position vs time

r (t)=[x (t) , y (t) , z (t)]

We could represent this by three 2D plots, but a more physical representation would be to trace
the particle trajectory in a single 3D plot. In this case the independent variable t does not form
one of the plot axes. Instead it is a parameter of the motion. The resulting graph is called a
parametric plot.

Some engineering problems deal with fields. A field is physical property which can vary
throughout space. For example, the variation of ground elevation across a region of Earth's
surface can be expressed as

z= f (x , y)

Here the two coordinates x,y might correspond to longitude and latitude and z to ground
elevation, possibly obtained from surveying. Or, z might represent surface temperature or
atmospheric pressure. In those cases we might also be interested with variation through time as
well as through space.

Since a computer screen is two dimensional, plots in three (and higher) dimensions will
necessarily have to represent a single projection of the function. Different projections might
highlight certain aspects of the function and obscure others. This problem grows with the number
of dimensions and is why scientific visualization is an active field of research.

In this lecture we want learn a few basic 3D plotting techniques. We will use the following code

Nx = 80;
Ny = 40;
x = linspace(-6,6,Nx);
y = linspace(-3,3,Ny);
z = zeros(Ny,Nx);
for i=1:Nx
 for j=1:Ny
 z(j,i) = cos(x(i))*sin(y(j));
 end
end

to generate an array of z values which we will plot in various ways. Notice that the first index of
the z array corresponds to the y coordinate and the second index to the x coordinate. This relates
to the raster scan format traditionally used on computer monitors and the way arrays appear in
graphics cards. Both Scilab and Matlab use this convention.

EE 221 Numerical Computing Scott Hudson 2016-01-08

Lecture 6: 3D plots and animation 2/9

2 The surf and mesh commands
Given any 2D array of real numbers z either of the commands

surf(z);
mesh(z);

will plot the z values as the elevation field of a 3D surface. The mesh command shows this
surface as a “wire mesh” while the surf command show it as a solid color-coded surface. The x
and y coordinates are the integer indicies of the array. Alternately we can explicitly provide x and
y values

surf(x,y,z);

The result for our data is shown in Fig. 3. Because this is a 2D projection of a 3D surface, some
parts of the surface may be obscured. To get different views use the Rotation tool from the Tools
menu. Click (right button in Scilab, left button in Matlab) and drag with your mouse to reorient
the surface. As in the 2D case, we can export a figure to a graphics file for inclusion in a
presentation or paper.

2.1 Changing figure and axes properties interactively (Scilab)

As with 2D plots we can use the Edit => Figure properties menu option to change the appearance
of our figure. Similar options are available in Scilab and Matlab but the details differ. We will
consider Scilab.

One of the most visually noticeable changes we can make is to use a different color map. The
color map specifies how different z values are mapped into different colors. This can be changed
by either directly editing the red-green-blue values (Fig. 2) or more practically by specifying a
color map in the Colormap dialog box. Scilab has several predefined color maps (see help
colormap).

EE 221 Numerical Computing Scott Hudson 2016-01-08

Fig. 1: Output of surf(x,y,z) command

Lecture 6: 3D plots and animation 3/9

Two of the most useful are

rainbowcolormap(n)
jetcolormap(n)

The integer n determines the number of discrete colors. A larger number, such as 256 gives a
smooth variation of color throughout the figure. But, you may want to have only eight discrete
colors in which case use 8 as the argument.

Using the Axes Editor we can change axis labels, figure title and the numerical label font for the
x, y and also z axes. In the Aspect submenu deselecting Cube scaling will produce a more
geometrically accurate representation of the surface. By also selecting the Isoview option the
surface plot will correspond to a physical representation of the surface with equal scaling for the
x,y,z axes.

Another useful command is

colorbar(zmin,zmax);

which adds a color bar to the figure showing the relationship between color and z value. After
various formatting changes our figure appears as shown in Fig. 4.

2.2 Changing figure and axes properties within a program (Scilab)

As with 2D plots we can execute commands within a program to make formatting changes.

EE 221 Numerical Computing Scott Hudson 2016-01-08

Fig. 2: Changing the color map.

Lecture 6: 3D plots and animation 4/9

Fig. 4 was generated by the following commands.
surf(x,y,z);
h = gce();
h.color_flag = 3;

fg = gcf();
fg.color_map = rainbowcolormap(256);
fg.figure_size = [900,600];

ax = gca();
ax.cube_scaling = "off";
ax.isoview = "on";
ax.font_style = 1;
ax.font_size = 3;
ax.grid = [0,0,0];

ax.x_label.text = "x axis";
ax.x_label.font_style = 3;
ax.x_label.font_size = 5;
ax.y_label.text = "y axis";
ax.y_label.font_style = 3;
ax.y_label.font_size = 5;
ax.z_label.text = "z axis";
ax.z_label.font_style = 3;
ax.z_label.font_size = 5;

ax.title.text = "My 3D Plot";
ax.title.font_style = 4;
ax.title.font_size = 6;

ax.rotation_angles = [60,-45];
ax.data_bounds = [-6,-3,-1;6,3,1];

colorbar(-1,1);

The get current entity command gce() and the color_flag subtly change the way the

EE 221 Numerical Computing Scott Hudson 2016-01-08

Fig. 3: Plot after applying format changes

Lecture 6: 3D plots and animation 5/9

surface color is interpolated. You can experiment with flag values of 0 through 4. If you use these
commands they must come immediately after the surf plotting command.

3 The contour command
Another way to represent surface elevation is by drawing labeled contours of constant elevation
on an x,y representation of the surface as is done in a topographic map.

contour(x,y,z,n);

Here n is the number of (uniformly spaced) contour levels you want drawn on the figure.
Replacing contour by contourf creates a filled contour plot. One irritation in Scilab is that
if we following the “raster scan” format we used with our initial data-generating code, we have to
replace the z argument with its transpose z.' (this is not the case in Matlab). As with all
graphics, we can adjust the formatting to our liking to get something such as shown in Fig. 4.

For the plain contour command Scilab adds numerical labels to the contours by default. I find
these to be too messy to be of much use and prefer a color bar as shown in the figure. To turn off
labeling use the xset('fpf',' ') command before the plotting, as shown below.

fg = scf(0);
clf();
fg.figure_size = [800,400];
fg.color_map = jetcolormap(11);
xset('fpf',' ');
contourf(x,y,z.',9);
ax = gca();
ax.isoview = "on";
ax.auto_ticks = ["on","on","on"];
ax.font_style = 3;
ax.font_size = 4;
ax.x_label.text = "longitude";
ax.x_label.font_size = 4;
ax.y_label.text = "latitude";
ax.y_label.font_size = 4;
ax.title.text = "ground elevation";
ax.title.font_size = 6;
colorbar(min(z),max(z));

EE 221 Numerical Computing Scott Hudson 2016-01-08

Lecture 6: 3D plots and animation 6/9

4 Parametric plots
“Trajectory” plots of the form [x(t) , y (t) , z (t)] can be generated by the commands

param3d(x,y,z); //Scilab
plot3(x,y,z); %Matlab

As an example, below is Scilab code to generate a spiral trajectory starting at the origin and
extending up along the z direction as time increases. After some interactive orientation and
formatting we end up with the graph of Fig. 5.

EE 221 Numerical Computing Scott Hudson 2016-01-08

Fig. 4: Output of the contour and countourf commands with added formatting

Lecture 6: 3D plots and animation 7/9

Nt = 200;
t = linspace(0,10,Nt);
x = zeros(Nt,1);
y = zeros(Nt,1);
z = zeros(Nt,1);
for i=1:Nt
 r = t(i)/10;
 x(i) = r*cos(2*%pi*t(i));
 y(i) = r*sin(2*%pi*t(i));
 z(i) = r;
end
param3d(x,y,z);

5 Animation (Scilab)
Animation is simply the process of generating a series of graphic figures one for each frame of
the animation. The frames can be displayed in “real time” on the screen or saved as graphics files
which can later be assembled into a video file. There are a few subtle points which arise when
generating animations. Let's illustrate by an example. We start with the following code

x = linspace(0,2*%pi,100);
y = sin(x);
nFrames = 200;
t = linspace(0,4*%pi,nFrames);

This is going to represent a vibrating string. Let's try to generate an animation as follows.

EE 221 Numerical Computing Scott Hudson 2016-01-08

Fig. 5: Parametric "trajectory" plot using the param3d(x,y,z) command

Lecture 6: 3D plots and animation 8/9

for i=1:nFrames
 plot(x,y*cos(t(i)));
end

As we should have guessed, this plots one after another position of the string on the same plot
producing the result in Fig. 6. We need to erase the old curve before plotting a new one. So we
try

for i=1:nFrames
 clf();
 plot(x,y*cos(t(i)));
end

This produces a blinking mess in which the y axis is constantly rescaling. The rescaling we can
get rid of by explicitly stating the data bounds

for i=1:nFrames
 clf();
 plot(x,y*cos(t(i)));
 ax = gca();
 ax.data_bounds = [0,-1;2*%pi,1];
end

The problem is that the screen is still a blinking mess. What is happening is that when we tell
Scilab to clear the figure, we see it go blank. Then when we tell Scilab to draw a new figure, we
see that appear. The result is irritating on/off “video flicker.” What we really want is that as we
are viewing one frame we are generating a new frame “behind the scenes.” When we are ready
for it we want the new frame to swap out the old frame “instantly.” This requires two segments of
memory or “video buffers.” One holds the currently visible frame. The other “background” buffer
is where the computer is generating the next frame. When ready, the computer rapidly copies the
background buffer contents into the visible buffer. In video systems this process is called double
buffering. Triple buffering is used in high-end video (e.g., gaming systems) so that while the
buffer copying is occurring the computer can already be working on another frame. Scilab
provides two commands to implement double buffering: drawlater() and drawnow().
They are very simple to use as shown in the following code.

EE 221 Numerical Computing Scott Hudson 2016-01-08

Fig. 6: First attempt at an animation

Lecture 6: 3D plots and animation 9/9

for i=1:nFrames
 drawlater(); //turn on double buffering so that operations
 clf(); //occur in the background
 plot(x,y*cos(t(i)));
 ax = gca();
 ax.data_bounds = [0,-1;2*%pi,1];
 drawnow(); //copy the background buffer to the visible buffer
end

This solves our problems. Inbetween the drawlater() and drawnow() commands we can
modify the figure in anyway we wish – adding labels, titles, changing color maps and so on.

The speed with which frames update depends on how long it takes to generate a new frame. If the
goal is to produce an independent video file then we want to save each frame to disk. One
approach is shown here.

scf(0);
for i=1:nFrames
 drawlater();

 //generate a new frame here

 drawnow();
 fname = msprintf("frames/f%03d.png",i);
 while (~isfile(fname))
 xs2png(0,fname);
 end
end

First we create a subdirectory names “frames” before running the animation code. During the
animation rendering the msprintf function creates a series of file names from the frame index
i. If this png file does not already exist it is written from the current graphics frame. The result is
a sequence of png files

f001.png , f002.png , ...

in the subdirectory frames. From there video editing software can be used to produce an
animation file. A useful free and open-source program for this is Virtualdub (virtualdub.org).

EE 221 Numerical Computing Scott Hudson 2016-01-08

	1 Introduction
	2 The surf and mesh commands
	2.1 Changing figure and axes properties interactively (Scilab)
	2.2 Changing figure and axes properties within a program (Scilab)

	3 The contour command
	We have only “scratched the surface” of the 3D plotting capabilities of Scilab/Matlab. Browsing the help files is a good way to learn more.
	4 Parametric plots
	5 Animation (Scilab)

