
Lecture 3
Programming structures

1 Introduction
In this lecture we introduce the basic programming tools that you will use to build programs. In
particular we will be introduced to the if, for and while loops.

2 Program files

2.1 Directories

The pwd command (print working directory) tells you what directory you are currently working
in.

-->pwd
 ans =
 C:\Users\Hudson

Use the cd (change directory) command followed by a valid directory name to move to another
directory.

-->cd Desktop
 ans =
 C:\Users\Hudson\Desktop

In Scilab the cd command with no argument moves you to your “home” directory.

-->cd
 ans =
 C:\Users\Hudson

Entering '..' for the directory name moves you up one directory level.

-->cd '..'
 ans =
 C:\Users

-->pwd
 ans =
 C:\Users

The mkdir and rmdir commands make/remove subdirectories.

-->mkdir newone;

-->cd newone
 ans =
 C:\Users\Hudson\newone

-->cd '..';

-->rmdir newone

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 2/16

The dir and ls commands list the contents of the current directory. If you want to list specific
files you can enter a name. You can use the '*' character as a wild card. For example

-->ls *menu
 ans =
 Start Menu

lists all file names that end in 'menu' (note this is not case sensitive).

2.2 Editing and running program files

From the command line, type edit to open up an editor window. Alternately there is an edit
icon in the upper-left corner of the command-line environment.

The Scilab editor is called SciNotes and is shown below. The circled arrow icons execute
whatever program you've entered into SciNotes. The first just executes the program as saved on
disk. The second first saves your code and then executes. The third saves all open programs (you
might have more than one open in SciNotes) before execution. To save without execution either
use the File menu or the disk icon.

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 3/16

Scilab program files have the extension *.sce. In Windows Scilab file icons look something like

this

In Windows you can right-click on the desktop, or in a directory, and you should see a menu
similar to the following. This will create an empty *.sce file named something like

New scilab-5.5.0 (64-bit) Application (.sce)

In either case double click on a Scilab file icon to open it in SciNotes. From there you can edit
and execute it.

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 4/16

2.3 Comments

A program is just a file containing one or more Scilab commands. In principle you could have
entered these one at a time on the command line, but when structured as a program they are much
more convenient to develop, save, modify and rerun. This brings up a key point about
programming. Generally the goal when writing a program is to create a resource that can be
reused and modified in the future, either by yourself or by others. When you are writing a
program you (hopefully) are clear about the purpose of the various commands and how they fit
together to implement an algorithm that solves the problem of interest. However, if you come
back in a month and look at the list of commands in your program it is quite common to have
forgotten all this. And, obviously, if some else opens your program they probably will have little
to no idea of what it's supposed to do. For this reason, programming languages allow programs to
include comments designed to explain in words what the program commands are doing. A well-
written program will contain comments that clearly explain what the program as a whole and its
various components do. This allows you or another programmer to easily understand how to use
and/or modify the program.

Scilab follows the C++ syntax for comments. Any text from the double back-slash symbol (//)
until the end of a line is treated as a comment. Matlab uses the percent sign (%). For example the
rather wordy code

//tryit.sce, Scott Hudson, 2011-06-03
//This program is an example, blah blah blah
x = 2; //this is an end-of-line comment
disp(sqrt(x)); //here's another

does exactly the same thing as the “bare” program

x = 2;
disp(sqrt(x));

The comment text is there only for the benefit of the human trying to understand the program.

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 5/16

2.4 Coding standards

In the spirit of using comments for understanding, adherence to a coding standard is an effective
way to ensure that all programs have the same “look and feel” and correctly interact with one
another. This is the software equivalent of the International Mechanical Code, or the National
Electrical Code. Work that does not “meet code” is unacceptable and must be corrected. In this
course we will not use a coding standard, but you should strive to adopt a consistent “look and
feel” for the way you format your code. In particular, you should, at a minimum, perform the
following command when you are done with a program.

“Edit” “Select All” , “Format” “Correct Indentation”

With this as background, we are now ready to learn about basic components with which we can
build a computer program. The details will be specific to Scilab/Matlab, but the concepts are
universal across almost all programing languages.

3 Flow control
Flow control refers to program statements that determine which parts of the program get
executed and under what conditions based on logical (true/false) conditions. The main flow
control statements we will use are: if, select, for, and while.

3.1 Logical Expressions

The most common logical expressions consist of relational statements combined with the basic
logical operators: and, or, not.

< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
~= not equal to
& logical and
| logical or
~ logical not

The statement 1<2 asks Scilab/Matlab to answer the question, Is one less than 2? The answer is
yes, so Scilab returns T for true.

-->1<2
 ans =
 T

We use the equal sign = to assign values to variables. To test the equality of two expressions we
use the double-equal symbol ==. Here we have Scilab tell us that 1 is not equal to 2 (F stands for
false).

-->1==2
 ans =
 F

 On the other hand the statement “1 is not equal to 2” is true.

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 6/16

-->1~=2
 ans =
 T

We can combine multiple T/F statements using the and/or/not logical operators.

-->(1<2)&(3>=4)
 ans =
 F

This statement is false because the “and” operator “&” requires both expressions to be true. (1<2)
is true but (3>=4) is false. Therefore the entire statement is false. On the other hand

-->(1<2)|(3>=4)
 ans =
 T

since the “or” operator “|” only requires one of the statements to be true.

It is good programming practice to use parentheses to clarify the order in which the elements of
an expression are evaluated. Blank space can help readability also. For example

(((x>1)&(y<0)) | (z>=0))

An important point is that an interval test, such as a≤ x≤b , has to be performed as the “and” of
two inequalities, such as

((a<=x)&(x<=b))

Exercise 1: Using the console, “ask” Scilab/Matlab if the following statement is
true: 1 is less than or equal to 2 and 4 is greater than 3.

3.2 if statement

The if statement is one of the most commonly encountered in programming. It allows you to do
something in response to a logical condition. In Scilab/Matlab its syntax is

if expression
 statements
end

Note that Scilab allows an optional then after expression as in

if expression then
 statements
end

Since Matlab does not use the then syntax we will avoid it in this class. This will make our
Scilab code more compatible with Matlab.

The way an if statement works is that Scilab/Matlab evaluates expression. If true, all
statements before the end keyword are executed. If false the statements are skipped and
execution continues at the statement immediate following the end keyword.

if (1<2)
 disp('that is true');
end

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 7/16

This code will write “that is true” to the command environment since 1 is less than 2. On the
other hand

if (1>2)
 disp('that is true');
end

will not write anything since the expression (1>2) is false. The statements can be of any number
and kind.

if (x>1)
 y = x;
 x = x^2;
end

An optional "default" else statement can be included

if expression
 statements1
else
 statements2
end

If expression is true then statements1 are executed, and if it is false then
statements2 are executed. Additionally, any number of elseif statements can be
included:

if expression1
 statements1
elseif expression2
 statements2
elseif expression3
 statements3
...
else
 statments
end

Here expression1 is evaluated. If it's true then statements1 are executed and the
program continues after the end statement. If expression1 is false then expression2 is
evaluated. If it is true then statements2 are executed and the program continues after the
end statement. This can be repeated for as many expressions as you want. If the optional else
is present, and if none of the statements are true, the else statements will execute. It's
important to note that no more than one set of statements will be executed, even if more than one
of the expressions are true. Only the statements corresponding to the first true expression are
executed, or failing that, the else statements if present.

As an example

if (x<1)
 y = 0;
elseif (x>1)
 y = 1;
else
 y = x;

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 8/16

end

Here is an important error to watch out for. You should not use arrays in logical expressions. For
example, consider the following

x = [0,1];
disp(x<0.5);

This produces the output

T F

Scilab goes through the array x and evaluates the statement (x<0.5) for each element, producing
an array out binary T/F values. Now consider

x = [0,1];
if (x<0.5)
 disp('x<0.5');
end

This produces no output, even though 0<0.5. Scilab can't both execute the disp statement and not
execute it. It will only execute the statement (and only once at that) if (x<0.5) is true for all
elements of x. If your intention is to run the if statement for each element of x independently,
then you need to add a for loop (see below), as in

x = [0,1];
for i=1:2
 if (x(i)<0.5)
 disp('x<0.5');
 end
end

Exercise 2: Write a program in which you first assign a value to the variable x.
Then the program uses an if statement to see if x is positive. If it is the program
executes the statement disp('x is positive');, otherwise it executes the
statement disp('x is zero or negative');.

3.3 select statement

Sometimes you want to perform certain actions based on the value of a variable. You can
implement this using the if … elseif … end structure, but the select statement in
Scilab (switch statement in Matlab) can be more convenient. The syntax is

select expression
 case v1
 statements
 case v2
 statements
 else
 statements
end

If expression has the value v1 then the statements listed under case v1 are executed. If it has
value v2 then the v2 statements are executed, and so on. If it has none of specified values
then the optional else statements are executed. For example,

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 9/16

select x
 case 1
 msg = "x is 1";
 case 2
 msg = "x is 2";
 else
 msg = "x is something else";
end

3.4 for loop

The for loop is used to execute a set of statements multiple times as determined by an index
variable or a list of values. It has the syntax

for x=expression
 statements
end

As an example

x = zeros(1,5);
for i=1:5
 x(i) = i;
end

-->x
 x =

 1. 2. 3. 4. 5.

The for loop evaluates 1:5 as the list of numbers [1,2,3,4,5]. It initializes the index
variable i to the first value (i=1) then runs the statement x(i) = i causing x(1) to be
assigned the value 1. When the end statement is reached the for loop assigns to i the second
value in the list (2) and once again executes the statements causing x(2) to be assigned the
value 2. It continues until it exhausts the list.

The expression can be a sequence defined with colon notation, such as 1:5, or 2:0.1:3, or it
can be an array. An example of the latter case would be

y = [1,5,-3];
for x=y
 x^3
end

The output is

 ans =
 1.
 ans =
 125.
 ans =

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 10/16

 - 27.

Exercise 3: Write a program that uses a for loop to display the squares of the first
six positive integers.

3.5 while loop

The while loop allows you to continue executing a set of statements as long as some logical
statement is true. The syntax is

while expression
 statements
end

The loop evaluates expression. If it's false then execution skips to the statement following
end. If it's true then statements are executed and expression is evaluated again. If it's
still true then statements are once again executed. This continues until expression is
false. At that point execution continue with the first statement after the end keyword. As an
example, consider

x = 1;
while (x<10)
 x = 2*x;
end

This produces

-->x
 x =

 16.

as follows

1. (x=1)<10 so x=2*x=2

2. (x=2)<10 so x=2*x=4

3. (x=4)<10 so x=2*x=8

4. (x=8)<10 so x=2*x=16

5. (x=0) is not <10 so the loop terminates with x=16

Exercise 4: Write a program that assigns a value to the variable x. Then use a
while loop to subtract 1 from x as long as x>1. After the while loop ends,
execute disp(x);

4 Functions
Functions allow us to break large programs into conceptual blocks that can be reused and
reorganized. One form of "top down" programming is to take a large problem and break it into
manageable parts. If those parts are themselves large they can be broken up into subparts and so
on. A programing solution to some problem might then have the structure

Big problem

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 11/16

 Part A
 Subpart A1
 Subpart A2
 Part B
 Subpart B1
 Subpart B2
...

In this approach, each of the subparts might be a separate function that is called by its "parent"
part. Those parent parts might also be functions which are called by the main program. These
functions are logically separate and often exist in separate files. We can even build up “libraries”
of useful functions which can be used repeatedly in different programs.

There are a few important differences between the ways Scilab and Matlab treat functions.

4.1 Simple function definition (Scilab)

In Scilab you can define a relatively simple function using the deff (define function) command.
For example

deff('y=f(x)','z=x^2,y=z+1');

This defines f(x) to return the value x^2+1 by first calculating z=x^2 followed by y=z+1.
Multiple statements can separated by commas as shown.

Exercise 5: In the console, use deff to define a function y = sinc(x) where
sinc(x) = sin(x)/x.

4.2 General function definition (Scilab)

For more complicated functions we use the function ... endfunction construct. As an
example

function y = myabs(x)
 if (x>=0)
 y = x;
 else
 y = -x;
 end
endfunction

implements the absolute value operation. This function is now defined and can be called from the
command line

-->myabs(-3)
 ans =
 3.

or from within a program.

Arguments and returned variables can be arrays. It is also possible to return more than one
variable. In this case an example of the syntax is

function [m,s] = moms(x)
 m = mean(x);
 s = mean(x.^2);

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 12/16

endfunction

This takes a vector as input and outputs two scalars

-->x = 1:5
 x =
 1. 2. 3. 4. 5.

-->[a,b] = moms(x)
 b =
 11.
 a =
 3.

In Scilab multiple functions can reside in a single program file. The filename does not have to be
related to any of the function names.

Exercise 6: Use the function ... endfunction construct to implement the
sinc(x) function.

4.3 General function definition (Matlab)

The Matlab function syntax is the same as in Scilab with the exception that end is used in place
of endfunction. In fact end is optional. Additionally (from Matlab documentation)

The commands and functions that comprise the new function must be
put in a file whose name defines the name of the new function,
with a filename extension of '.m'.

In other words if you write a function y=myfunc(x) it must be saved in a file named myfunc.m
(an “m-file”). You can then call myfunc(x) from the command line or in other functions. The
Scilab approach is closer to languages such as C and Fortran.

4.4 Recursive functions

A function which calls itself is said to be recursive. It may seem bizarre to have a function call
itself, but it can be very useful. This simple example implements the factorial function.

function m = myfact(n)
 if (n==1)
 m = 1;
 else
 m = n*myfact(n-1);
 end
endfunction

If n=1 then n!=1 is the returned value. For n> 1 we use the fact that n!=n⋅(n−1)! . Suppose
we call myfact(3). The function wants to return m = 3*myfact(2). But myfact(2)
needs to be evaluated first. Scilab opens a new instance of the function and passes the argument
2. This second function call wants to return m = 2*myfact(1). But myfact(1) needs to

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 13/16

be evaluated. So Scilab opens a third instance of the function and passes the argument 1. In this
case the condition (n==1) is true and the value m = 1 is returned to the second function call.
The second function call now has the value of m = 2*1 and returns this to the first function
call. Finally the first function call can now evaluate m = 3*2 and return this to the user.

Obviously a recursive function will work only if eventually it stops calling itself and returns a
specific value.

4.5 Nested functions

It is possible to have a function defined within another function. For example, in Scilab (for
Matlab simply replace endfunction with end)

function y = f(x)
 function v = g(u)
 v = cos(u);
 endfunction
 y = g(x)*sin(x);
endfunction

-->f(2)
 ans =
 - 0.3784012
-->g(2)
 !--error 4
Undefined variable: g

Function g(x) is defined inside function f(x). When we evaluate f(x) at a value of 2, that
function sets y = g(2)*sin(2) where g(2)=cos(2) resulting in a returned value of

cos (2)sin (2)=−0.3784012

When we try to call g(u) outside of f(x), however, we get an error. Since g(u) is defined
inside of f(x) it is not visible outside of g(u). We say that the scope of the function g(u) is
limited to inside of f(x). Now consider the following

function v = g(u)
 v = sin(u);
endfunction

function y = f(x)
 function v = g(u)
 v = cos(u);
 endfunction
 y = g(x)*sin(x);
endfunction

-->f(2)
 ans =
 - 0.3784012

-->g(2)
 ans =
 0.9092974

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 14/16

We have two functions named g(u). When g(u) is called inside f(x) it clearly returns the
value g(2)=cos(2) since we get the same output for f(2) as before. But now calling g(2)
outside of f(x)does not produce an error. Instead it returns

g(2)=cos(2)=0.9092974

which is the definition of g(u)given outside of f(x). Generally speaking, variables and
functions are only “visible” inside the function in which they are defined, and inside all nested
functions. Thus variables in the “main program” are globally visible. If a variable or function is
defined a second time inside a function, that definition overrides the previous definition within
the scope of that function (and nested functions).

4.6 Variable scope and global variables

Now consider the behavior of the following five similar programs. In case 1, a=2 is defined in
the main program. Function f (x) , being nested within the main program, can “see” the value of
a, so it calculates f (2)=4 . In case 2, f (x) changes the value of a to a=4 , and calculates
f (2)=8 , but notice that outside of the function definition we still have a=2 . The scope of the

change a=4 is only within the function declaration, not outside it. In case 3 we initially have
a=2 , but before calling f (x) we change the value to a=4 . This change is visible inside the
function, so f (2)=8 . In case 4 we declare the variable a to be global and assign it the value
a=2 . Inside the function we also declare a to be global and assign it the value a=4 . As in case
2, this results in f (2)=8 but it also changes the value of a outside the function (globally).

a = 2; //case 1

function y = f(x)
 y = a*x;
endfunction

disp('f(2)='+string(f(2))+', a='+string(a));

 f(2)=4, a=2

a = 2; //case 2

function y = f(x)
 a = 4;
 y = a*x;
endfunction

disp('f(2)='+string(f(2))+', a='+string(a));

 f(2)=8, a=2

a = 2; //case 3

function y = f(x)
 y = a*x;
endfunction

a = 4;
disp('f(2)='+string(f(2))+', a='+string(a));

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 15/16

 f(2)=8, a=4

global a //case 4
a = 2;

function y = f(x)
 global a
 a = 4;
 y = a*x;
endfunction

disp('f(2)='+string(f(2))+', a='+string(a));

 f(2)=8, a=4

4.7 Variable number of arguments

It can be very useful for functions to have a variable number of input and/or output arguments.
The following function has two input and two output arguments.

function [y,ySize] = f(x,z)
 [nargout,nargin] = argn(); //Scilab needs this, Matlab doesn't
 if (nargin==1)
 y = x^2;
 else
 y = z*x^2;
 end
 if (nargout==2)
 if (abs(y)>=10)
 ySize = 'big';
 else
 ySize = 'small';
 end
 end
endfunction

However we can call it with a single input and assign its output to a single variable

u = f(3);
disp('u='+string(u));

 u=9

Or supply both input variables and assign its output to two variables

[u,v] = f(3,2);
disp('u='+string(u)+' and v='+v);

 u=18 and v=big

The first line of the function assigns values to nargin, the number of input arguments, and
nargout, the number of output arguments. (This assignment is needed in Scilab; in Matlab
these variables are automatically assigned.) If nargin==1 we know that only an x value was

EE 221 Numerical Computing Scott Hudson 2018-08-29

Lecture 3: Programming structures 16/16

passed to the function. Otherwise we know that both x and z values are available. Likewise, if
nargout==1 we know that only y needs to be calculated. Otherwise we also assign a string
value to ySize.

EE 221 Numerical Computing Scott Hudson 2018-08-29

	1 Introduction
	2 Program files
	2.1 Directories
	2.2 Editing and running program files
	2.3 Comments
	2.4 Coding standards

	3 Flow control
	3.1 Logical Expressions
	3.2 if statement
	3.3 select statement
	3.4 for loop
	3.5 while loop

	4 Functions
	4.1 Simple function definition (Scilab)
	4.2 General function definition (Scilab)
	4.3 General function definition (Matlab)
	4.4 Recursive functions
	4.5 Nested functions
	4.6 Variable scope and global variables
	4.7 Variable number of arguments

