
Lecture 2
Arrays

1 Introduction
As the name Matlab is a contraction of “matrix laboratory,” you would be correct in assuming
that Scilab/Matlab have a particular emphasis on matrices, or more generally, arrays. Indeed, the
manner in which Scilab/Matlab handles arrays is one of its great strengths. Matrices, vectors and
the operations of linear algebra are of tremendous importance in engineering, so this material is
quite foundational to much of what we will do in this course. In this lesson we are going to focus
on generating and manipulating arrays. In later lessons we will use them extensively to solve
problems. Consider the following session.

-->A = [1,2;3,4]
 A =
 1. 2.
 3. 4.

-->x = [1;2]
 x =
 1.
 2.

-->y=A*x
 y =
 5.
 11.

Here we defined a 2-by-2 matrix A and a 2-by-1 vector x. We then computed the matrix-vector
product y=A*x which is a 2-by-1 vector.

There are various ways to create an array. In general the elements of an array are entered between
the symbols [...]. A space or a comma between numbers moves you to the next column while
a carriage return ("enter" key on the keyboard) or a semi-colon moves you to the next row. For
example

-->B = [1 2
--> 3 4]
 B =
 1. 2.
 3. 4.

creates a 2-by-2 array using spaces and a carriage return. The following example shows how
either commas or spaces can be used to separate columns.

-->u = [1,2,3]
 u =
 1. 2. 3.

-->v = [1 2 3]
 v =
 1. 2. 3.

It's a matter of preference, but I find that using commas increases readability, especially when

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 2/16

entering more complicated expressions. The comma clearly delimits the column entries. Now we
demonstrate how either semi-colons, carriage returns or both can be used to separate rows.

-->x = [1;2;3]
 x =
 1.
 2.
 3.

-->y = [1
--> 2
--> 3]
 y =
 1.
 2.
 3.

-->z = [1;
--> 2;
--> 3]
 z =
 1.
 2.
 3.

Again, my preference is for a visible delimiter.

Exercise 1: Input the following arrays in the console:

z=[7
−2

3] , B=[−2 1 5
1 −3 4]

2 Initializing an array
As shown above, arrays can be entered directly at the command line (or within a program). There
are some special arrays that are used frequently and can be created using built-in functions. An
array of all zeros can be created using the zeros(m,n)command

-->A = zeros(2,3)
 A =
 0. 0. 0.
 0. 0. 0.

The command ones(m,n) creates an array of all 1's.

-->B = ones(3,2)
 B =
 1. 1.
 1. 1.
 1. 1.

An array with 1's on the diagonal and 0's elsewhere is created using the eye(m,n) command
(“eye” as in “i”dentity matrix).

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 3/16

-->C = eye(3,3)
 C =
 1. 0. 0.
 0. 1. 0.
 0. 0. 1.

Here this creates a 3-by-3 identity matrix. However, the matrix need not be square, as in

-->D = eye(2,3)
 D =
 1. 0. 0.
 0. 1. 0.

To create a square matrix of all 0's except for specified values along the diagonal we use the
diag([...]) command

-->D = diag([1,2,3])
 D =
 1. 0. 0.
 0. 2. 0.
 0. 0. 3.

The diag command also allows you to extract the diagonal elements of a matrix

-->A = [1,2;3,4]
 A =
 1. 2.
 3. 4.

-->diag(A)
 ans =
 1.
 4.

The function size(A) returns the dimensions of the array A, as in

-->size(A)
 ans =
 2. 2.

If you only want the number or rows or columns of a matrix you can specify that

-->A = [1,2,3;4,5,6]
 A =

 1. 2. 3.
 4. 5. 6.

-->size(A,'r') //or size(A,1) which is how Matlab does it
 ans =

 2.

-->size(A,'c') //or size(A,2) which is how Matlab does it
 ans =

 3.

Vectors are one-dimensional arrays. The size() command works on vectors, but the
length() command can be more convenient in that it returns a single number which is the
number of elements in the vector. Consider the following.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 4/16

-->v = [1;2;3]
 v =
 1.
 2.
 3.

-->size(v)
 ans =
 3. 1.

-->length(v)
 ans =
 3.

An array operator that can be useful in entering array values is the transpose operator. In
Scilab/Matlab this is the single quote sign. Consider the following

-->v = [1 2 3]'
 v =
 1.
 2.
 3.

Sometimes it is convenient to produce arrays with random values. The rand(m,n) command
does this.

-->B = rand(2,3)
 B =
 0.2113249 0.0002211 0.6653811
 0.7560439 0.3303271 0.6283918

The random numbers are uniformly distributed between 0 and 1. You can use commands like
zeros, ones and rand to create an array with the same dimensions as an existing array. For
example, in Scilab

-->A = eye(3,2)
 A =
 1. 0.
 0. 1.
 0. 0.

-->ones(A) //Scilab specific
 ans =
 1. 1.
 1. 1.
 1. 1.

The ones(A) command uses the dimensions of A to form the array of ones. Matlab is slightly
different. In Matlab the corresponding command would be

>>A = eye(3,2)
 A =
 1. 0.
 0. 1.
 0. 0.

>>ones(size(A)) %Matlab specific
 ans =
 1. 1.
 1. 1.
 1. 1.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 5/16

In Matlab you need to use the size() function to pass the dimensions of the array A. In Scilab
you do not.

In many applications you want to create a vector of equally spaced values. For example

-->t = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]
 t =
 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Instead of entering all the values directly you can use the following short cut

-->t = 0:0.1:0.8
 t =
 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

This "colon" notation tells Scilab/Matlab to create a vector named t, starting at 0 and
incrementing by 0.1 up to the value 1. This approach allows you to define the increment (0.1 in
this case). The default increment is 1 as shown here

-->x = 1:5
 x =
 1. 2. 3. 4. 5.

Sometimes you are more concerned about the total number of elements in the vector rather than a
specific increment. The linspace() command allows you to specify the start and end values
and the total number of elements. Consider the following.

-->x = linspace(0,1,6)
 x =
 0. 0.2 0.4 0.6 0.8 1.

This creates a vector with values ranging from 0 to 1 and a total of 6 elements. It is sometimes
convenient to be able to "reshape" an array. In Scilab the matrix() command allows you to do
this.

-->A = [1,2,3;4,5,6]
 A =
 1. 2. 3.
 4. 5. 6.

-->matrix(A,3,2) //Scilab specific
 ans =
 1. 5.
 4. 3.
 2. 6.

In Matlab the reshape() command does this.

>>A = [1,2,3;4,5,6]
 A =
 1. 2. 3.
 4. 5. 6.

>>reshape(A,3,2) %Matlab specific
 ans =
 1. 5.
 4. 3.
 2. 6.

Finally, the elements of an array are not limited to numerical values but can consist of defined

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 6/16

constants, variables or functions. For example,

-->x = 0.2
 x =
0.2

-->C = [cos(x),sin(x);-sin(x),cos(x)]
 C =
 0.9800666 0.1986693
 - 0.1986693 0.9800666

Exercise 2: Use the colon notation to generate the array 0, 0.25, 0.5, 0.75, 1.

Exercise 3: Enter the array B=[−2 1 5
1 −3 4] (already defined in Ex 1). Use

the ones function to create an array of 1 of the same size as B.

3 Combining arrays
Two or more existing arrays can be combined into a single array by using the existing arrays as
elements in the new array. Consider the following.

-->v = [1,2,3]
 v =
 1. 2. 3.

-->A = [v;v]
 A =
 1. 2. 3.
 1. 2. 3.

-->B = [v,v]
 B =
 1. 2. 3. 1. 2. 3.

The arrays being combined must “fit” together by having compatible dimensions, otherwise you
receive an error.

-->u = [4,5]
 u =
 4. 5.

-->C = [u;v]
 !--error 6
Inconsistent row/column dimensions.

However consider

-->[u,0;v]
 ans =
 4. 5. 0.
 1. 2. 3.

-->D = [u,v]
 D =
 4. 5. 1. 2. 3.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 7/16

Here are two more examples.

-->A = [1,2;3,4];

-->B = [5,6;7,8];
-->[A,B]
 ans =
 1. 2. 5. 6.
 3. 4. 7. 8.

-->[A;B]
 ans =
 1. 2.
 3. 4.
 5. 6.
 7. 8.

These kinds of operations are very useful in many applications where large matrices are
constructed by stacking sub-matrices together. The submatrices might represent specific pieces of
a system, and the stacking operation corresponds to “assembling” the system.

Exercise 4: Enter u=[1 2 3] and v=[4
5] . Combine these to form the array

C=[1 2 3 4
1 2 3 5] .

4 Operating on array elements
If A is a two-dimensional array, then A(m,n) refers to the element in the mth row and nth
column. Consider the following.

-->A = [1,2,3;4,5,6;7,8,9]
 A =
 1. 2. 3.
 4. 5. 6.
 7. 8. 9.

-->A(3,2)
 ans =
 8.

-->A(3,2) = 10
 A =
 1. 2. 3.
 4. 5. 6.
 7. 10. 9.

We can both access and assign the value of A(3,2) directly. Often you want to extract a row or
column of a matrix. The "colon" notation allows you to do this. For example,

-->A(:,1)
 ans =
 1.
 4.
 7.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 8/16

-->v = A(2,:)
 v =
 4. 5. 6.

In the first case we extract the 1st column of A. In the second case we extract the 2nd row of A
and assign it to the variable v. In general the semicolon tells Scilab/Matlab to run through all
values of the corresponding subscript or index. More generally you can extract a subrange of
values. Consider

-->A(1:2,2:3)
 ans =
 2. 3.
 5. 6.

This extracts rows 1 through 2 and columns 2 through 3 to create a new 2-by-2 matrix from the
elements of the original 3-by-3 matrix. Elements of a vector can be deleted in the following
manner.

-->t = 0:0.2:1
 t =
 0. 0.2 0.4 0.6 0.8 1.

-->t(2) = []
 t =
 0. 0.4 0.6 0.8 1.

-->t(3:5) = []
 t =
 0. 0.4

In the first case we delete the second element of t. In the second case we delete elements 3
through 5. This technique applies to deleting rows or columns of a matrix.

 A =
 1. 2. 3.
 4. 5. 6.
 7. 10. 9.

-->A(1,:) = []
 A =
 4. 5. 6.
 7. 10. 9.

-->A(:,2) = []
 A =
 4. 6.
 7. 9.

Exercise 5: Use the eye command to generate the array A=[1 0 0
0 1 0
0 0 1] . Change

a single element of A to get A=[1 0 0
0 1 2
0 0 1] .

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 9/16

Exercise 6: Starting with A=[1 0 0
0 1 2
0 0 1] , extract the 2nd row to get

u=[0 1 2] . Extract the 3rd column to get v=[021] .

5 Arithmetic operations on arrays
Arrays can be multiplied or divided by a scalar (single number)

-->1.5*[1,2,3]
 ans =
 1.5 3. 4.5

-->[1,2,3]/2
 ans =
 0.5 1. 1.5

An operation such as A+1 where A is a matrix makes no sense algebraically, but Scilab/Matlab
interprets this as a shorthand way of saying you want to add 1 to each element of A

-->[1,2;3,4]+1
 ans =
 2. 3.
 4. 5.

Addition, subtract and multiplication of two arrays follow the rules of linear algebra. To add or
subtract arrays they must be of the same size. If they are not you get an error.

-->A = [1,2;3,4]
 A =
 1. 2.
 3. 4.

-->B = [1,2,3;4,5,6]
 B =
 1. 2. 3.
 4. 5. 6.

-->A+B
 !--error 8
Inconsistent addition.

Otherwise each element of the resulting array is the sum or difference of the corresponding
elements in the two arrays.

-->C = [2,1;4,3]
 C =
 2. 1.
 4. 3.

-->A+C
 ans =

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 10/16

 3. 3.
7. 7.

-->A-C
 ans =
 - 1. 1.
 - 1. 1.

To multiply two arrays as in A*B the number of columns of A must equal the number of rows of
B. If A is m-by-n then B must be n-by-p. The product A*B will be m-by-p.

-->A
 A =
 1. 2.
 3. 4.

-->B
 B =
 1. 2. 3.
 4. 5. 6.

-->A*B
 ans =
 9. 12. 15.
 19. 26. 33.

-->B*A
 !--error 10
Inconsistent multiplication.

If C=A*B the elements of C are computed as C ij=∑
k=1

n

Aik B kj .

The inner product, or dot product of two vectors can be calculated by transposing one and
performing an array multiplication.

-->u = [1;2;3]
 u =
 1.
 2.
 3.

-->v = [4;5;6]
 v =
 4.
 5.
 6.

-->u'*v
 ans =
 32.

-->1*4+2*5+3*6
 ans =

 32.

Arrays cannot be divided, but we do have the concept of "inverting" a matrix to solve a linear
equation. If A x=b and A is a square, non-singular matrix, then x=A−1b is the solution to

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 11/16

this system of linear equations. This is sort of like "dividing A into b." In Scilab/Matlab we use
the notation A\b to represent this. You can also think of the \ operator as representing the inverse
operation, so that A\ functions as A−1 . Consider the following.

-->A = [1,2;3,4]
 A =
 1. 2.
3. 4.

-->b = [5;6]
 b =
 5.
 6.

-->x = A\b
 x =
 - 4.
 4.5

-->A*x
 ans =
 5.
 6.

If the matrix A is singular (has no inverse) you'll get an error. We'll talk more about solving
systems of linear equations later.

Exercise 7: If A=[2 1
−3 4] and b=[1

−1] find x such that Ax=b .

6 Vectorized functions
A very powerful feature of Scilab/Matlab is that functions can be “vectorized.” In a language
such as C, if I have an array x and I want to calculate the sin of each element of x, I need to use
a for loop, as in

for (i=1;i<=n;i++) {
 y(i) = sin(x(i));
}

In Scilab/Matlab we simply write

y = sin(x)

This creates a new array y of the same size as x. Each element of y is the sin of the
corresponding element of x. For example

-->x = [0,0.1,0.2,0.3]
 x =
 0. 0.1 0.2 0.3

-->y = sin(x)
 y =
 0. 0.0998334 0.1986693 0.2955202

Exercise 8: Set x = 0:0.2:1 and calulate y = exp(x) then z = log(y)

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 12/16

7 Array operators
In linear algebra, arrays (e.g., vectors and matrices) are considered entities in their own right and
there are rules for operating on them, such as matrix multiplication and the inverse. In practice,
sometimes an array is just a convenient collection of numbers. In this case you might want to
perform operations on the elements of the array independent of the rules of linear algebra. For
example, suppose u=[1 2 3] and v=[4 5 6] and you want to multiply each element of u by
the corresponding element of v w=[1⋅4 2⋅5 3⋅6]=[4 10 18] . This is not a standard operation
in linear algebra. To perform component-by-component operations (or "array operations") you
prefix the operator with a period. For example,

-->u = [1,2,3]
 u =
 1. 2. 3.

-->v = [4,5,6]
 v =
 4. 5. 6.

-->u.*v
 ans =
 4. 10. 18.

-->u.^2
 ans =
 1. 4. 9.

This brings up a subtle point. Consider the following.

-->A = [1,2;3,4]
 A =
 1. 2.
 3. 4.

-->A^2
 ans =
 7. 10.
 15. 22.

-->A.^2
 ans =
 1. 4.
 9. 16.

Notice the very different results. The operation A^2 tells Scilab/Matlab to use the rules of matrix
multiplication to calculate A*A. The operation A.^2 tells Scilab/Matlab to square each element
of A.

When an array represents a collection of values, say measurements, we often want to look at
properties such as the sum or average of the values. Consider the following.

-->x = 0:0.1:1
 x =
 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

-->sum(x)
 ans =
 5.5

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 13/16

-->mean(x)
 ans =
 0.5

The function sum() adds all the elements of an array while mean() calculates the average
value of the elements. If we wanted to find the mean-square value (average of the squared values)
we could use the command

-->mean(x.^2)
 ans =
 0.35

This first squares each element of x and computes the mean of those squared values. Here's an
important point. Consider the following

-->x = [1,2];
-->1./x
 ans =
 0.2
 0.4

-->(1)./x
 ans =
 1. 0.5

In the first instance Scilab interpreted the dot as a decimal point and returned

-->(1.)/x
 ans =
 0.2
 0.4

which is something called the “pseudo inverse” and not what we were after. We need to use
parentheses to avoid this interpretation

-->(1)./x
 ans =
 1. 0.5

Exercise 9: Set x = 0:0.2:1 and calculate tan(x). Then calculate
sin(x)./cos(x) and compare the results.

8 Complex array elements
All of the preceding applies to complex array elements. For example, in Scilab (for Matlab use
1i instead of %i)

-->A = [1,%i;2,-%i]
 A =
 1. i
 2. - i

-->A^2
 ans =
 1. + 2.i 1. + i
 2. - 2.i - 1. + 2.i

The output can be a bit difficult to read with complex arrays. A^2 produces a 2-by-2 matrix of

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 14/16

complex values each expressed as real and imaginary parts. It can be helpful to view these
separately. The real and imag commands allow you to do this.

-->B = A^2
 B =
 1. + 2.i 1. + i
 2. - 2.i - 1. + 2.i

-->real(B)
 ans =
 1. 1.
 2. - 1.

-->imag(B)
 ans =
 2. 1.
 - 2. 2.

One subtle point is that the single-quote operator is actually the "transpose-conjugate" operator. It
takes the transpose of a matrix followed by its complex conjugate. For a real matrix this is simply
the transpose. But for a complex matrix you need to remember that there is also a conjugation
operation.

-->A
 A =
 1. i
 2. - i

-->A'
 ans =
 1. 2.
 - i i

If you just want the transpose of a complex matrix use the .' operator.

-->A.'
 ans =

 1. 2.
 i - i

Exercise 10: Set x = 0:0.2:1 and calculate w = exp(%i*x). (Use i instead of
%i in Matlab.) Calculate real(w) and compare to cos(x). Calculate imag(w)
and compare to sin(x).

9 Structures
Arrays are convenient ways to organize data of a common type. Often you want to organize
different types of data as a single entity. Many programing languages allow you to do this using
“structures.” In Scilab/Matlab a structure is define as follows.

St = struct(field1,value1,field2,value2...);

Here's an example

-->Object = struct('name','ball joint','mass',2.7)
 Object =
 name: "ball joint"
 mass: 2.7

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 15/16

This creates a structure named “object” having two fields: name and mass. Fields are accessed
using the syntax struct.field. Here we change the mass

-->Object.mass = 3.2
 Object =
 name: "ball joint"
 mass: 3.2

Fields can be strings, numbers or even arrays. For example, say we have a rigid body. The
orientation of this body in space is specified by six numbers: three coordinates of its center of
mass, and three rotation angles. We might define a structure such as

-->Body = struct('pos',[-2,0,3],'ang',[12,-20,28])
 Body =
 pos: [-2,0,3]
 ang: [12,-20,28]

Elements of the arrays are accessed as follows

-->Body.ang(2) = -22
 Body =
 pos: [-2,0,3]
 ang: [12,-22,28]

The use of structures can greatly streamline complicated programing projects by uniting various
data into a single logical entity. Arrays of structures are possible, as in

-->Person = struct('name','','age',0);
-->Member = [person,person,person];
-->Member(2).name = 'Tom';
-->Member(2).age = 32;
-->Member(2)
 ans =
 name: "Tom"
 age: 32

This defines a structure person and then an array of three of these structures named member.
Each element could refer to a member of a three-member team. Fields are accessed as shown.
You can even have structures serve as fields of other structures. Here's an example.

-->Book = struct('title','','author','');
-->Class = struct('name','','text',Book);
-->Class.name = "Engl 101";
-->Class.text.title = "How to Write";
-->Class.text.author = "Kay Smith";
-->Class.text
 ans =
 title: "How to Write"
 author: "Kay Smith"

You can skip the “initializing” of the structure and just start assigning values to the fields. For
example.

-->clear
-->Class.name = 'Intro Psych';
-->Class.enrollment = 24;

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 2: Arrays 16/16

10 Three and higher dimensional arrays
Arrays can have as many dimensions as desired. Of course arrays with more than two dimensions
are cumbersome to display on the screen or page. Consider

-->A = zeros(2,2,2)
 A =

(:,:,1)

 0. 0.
 0. 0.
(:,:,2)

 0. 0.
 0. 0.

This creates a three-dimensional array. Elements are accessed in the usual manner

-->A(2,1,2) = 3
 A =

(:,:,1)

 0. 0.
 0. 0.
(:,:,2)

 0. 0.
 3. 0.

EE 221 Numerical Computing Scott Hudson 2017-01-25

	1 Introduction
	2 Initializing an array
	3 Combining arrays
	4 Operating on array elements
	5 Arithmetic operations on arrays
	6 Vectorized functions
	7 Array operators
	8 Complex array elements
	9 Structures
	10 Three and higher dimensional arrays

