
Lecture 1
Introduction

1 Course goals
Most of your engineering courses teach you theory and analytic methods using the techniques of
mathematics (calculus, linear algebra, differential equations, and so on). The purpose is to train
you to understand significant engineering problems from a fundamental theoretical perspective.
You need this foundation to be able to design effective solutions to difficult problems – it's
practically impossible to solve a problem you don't thoroughly understand.

Unfortunately, the set of engineering problems that can be solved analytically (with pencil, paper
and even a calculator) is limited to relatively simple and idealized cases. Indeed, many “textbook
problems” are carefully designed so that you can end up with the “exact answer.” However, most
applications in your engineering career will involve more complex systems for which you can
mathematically formulate the problem (if you've learned your theory) but cannot solve the
resulting equations analytically. People have long realized that in these cases numerical solutions
are possible. Yet before the development of digital computers, when calculations had to be done
by hand or slide rule, the application of “numerical computing” was fairly limited. As a result in
the past engineers were forced to make many simplifying assumptions, build scale models, use
trial and error and so on.

In the last several decades the development of computer technology has revolutionized
engineering. Almost any problem that can be formulated mathematically can be solved using
numerical techniques. Systems as complex as the supersonic flow of air through a jet engine or
the operation of an integrated circuit containing millions of transistors are now routinely
analyzed in minute detail using numerical methods implemented on computers.

This is the motivation behind “EE 221 Numerical Computing for Engineers.” The purpose of this
course is for you to:

1. learn fundamental numerical methods so you can understand how to formulate numerical
solutions to difficult engineering problems, and

2. develop programing skills using Scilab/Matlab so you are able to effectively implement
your numerical solutions.

The beginning of the course will be devoted to basic programing techniques, control structures,
input/output, graphics and the like. For the remainder of the course we will use those skills to
learn and implement numerical methods for important classes of problems.

2 Course topics
The main topics we will cover are listed below. Additional topics and programming project
examples will be covered as time permits.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 2/17

Scilab/Matlab Basics

• Introduction

• Arrays

• Programming structures

• Input and output

• 2D plots

• 3D plots and animation

Numerical methods

• Root finding

• Polynomials

• Linear algebra

• Linear systems

• Nonlinear systems

• Interpolation

• Optimization

• Curve fitting

• Numerical calculus

• Random numbers

• Matrix diagonalization

3 Course structure and grading
Your grade will be composed of the following components

• 20% Homework, typically twelve assignments in total, no late homework accepted. Your
lowest score is dropped. I heavily weight the effort you put into your assignments.
Assignments typically have a pencil and paper component to be turned in as hard copy,
and a programming component to be submitted electronically via the course website.

• 80% Exams, 40% for each of two exams. The exams will include programming problems
to be done in the lab during the specified exam times as well as pencil-and-paper
problems.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 3/17

4 Scilab and Matlab
Computers basically do lots of relatively simple calculations really fast. Numerical methods are
typically mathematical statements of algorithms that (more-or-less) solve analytically intractable
problems by doing lots of adding, subtracting, multiplying and dividing along with logic
operations to guide program flow and termination. Computing runs the gamut from hand-held
calculators to massively parallel supercomputers. Calculators are fairly straight-forward, and you
will use one regularly throughout your coursework. Supercomputers are often dedicated to
specific types of problems for which highly optimized computer code, typically written in the
C/C++ or Fortran languages and compiled, is under ongoing development by teams of
researchers. In the middle lies the class of problems appropriate to a single PC.

It's a good idea to use a computing environment that best fits your problem. You want to get a
solution in a reasonable time with a minimum of effort. Simple arithmetic or evaluation of
elementary functions can readily be done with a $15 calculator. It would be a waste to boot up a
computer and open a programing environment in this case. For larger problems requiring a
computer there are many options. Spreadsheets are useful for many basic engineering situations.
They are quite visual and have graphic “programing” environments that are fairly intuitive. Why
write a computer program if you can solve the problem with a spreadsheet? At the “high end”
you can use a compiled language such as C with lots of time devoted to optimizing your code for
the utmost performance. In between is a large class of problems where you want the best of both
approaches. This is the target for computing environments such as Scilab and Matlab.

Scilab and Matlab are numerical computing environments that are extremely useful for the type
of calculations performed by engineers. This environment combines some of the best features of
a graphing calculator and a traditional computer programming environment. You will have an
opportunity to use this tool extensively in your engineering coursework and most likely in your
career.

Matlab (www.mathworks.com) is a commercial product, and expensive. Although the student
version is only about $50 (but expires when you are no longer a student), a single “regular”
license is more than $2,000. On the other hand, Scilab is a free, open-source tool
(www.scilab.org). They have quite a bit in common. If you learn one you can transfer that
knowledge to the other very easily. In this course we will emphasize Scilab. At the same time, I
will mostly emphasize those aspects of Scilab that are identical or very similar to Matlab so that
the conversion is essentially transparent. Where there are differences I will point those out.

4.1 History

(From http://en.wikipedia.org/wiki/Matlab)

Short for "matrix laboratory", MATLAB was invented in the late 1970s by Cleve Moler,
then chairman of the computer science department at the University of New Mexico. He
designed it to give his students access to LINPACK and EISPACK without having to
learn Fortran. It soon spread to other universities and found a strong audience within the
applied mathematics community. Jack Little, an engineer, was exposed to it during a visit
Moler made to Stanford University in 1983. Recognizing its commercial potential, he
joined with Moler and Steve Bangert. They rewrote MATLAB in C and founded The
MathWorks in 1984 to continue its development.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 4/17

(From http://en.wikipedia.org/wiki/Scilab)

Scilab was created in 1990 by researchers from INRIA and École nationale des ponts et
chaussées (ENPC). It was initially named Ψlab[12] (Psilab). The Scilab Consortium was
formed in May 2003 to broaden contributions and promote Scilab as worldwide reference
software in academia and industry.[13] In July 2008, in order to improve the technology
transfer, the Scilab Consortium joined the Digiteo Foundation. […] Since July 2012,
Scilab is developed and published by Scilab Enterprises.

There are other free/open-source Matlab alternatives in addition to Scilab. One of the most
widely used is GNU Octave. In some ways Octave is arguably even more Matlab compatible than
Scilab. However, it's primarily written for Linux systems as is not as “clean” to install on
Windows PCs or Macs. The Python programing language has been gaining ground in the
numerical computing community, but differs significantly from Matlab. For these reasons I prefer
Scilab as the “best” free/open-source Matlab alternative.

5 Installing and running Scilab
Scilab can be downloaded from www.scilab.org. There are executable versions for Windows,
Mac and Linux. You can also download the complete source code. On Windows simply
download the installation program (scilab-5.5.0_x64.exe is about 128MByte). Double click and
agree to the license to install. The default on all options is recommended. When installation is
complete you should have a Scilab icon on your desktop that looks some like this

There should also be a Scilab entry in the Start Menu. When you start Scilab you should see a
window something like that shown below.

In the middle is the “console” where we will do most of our work. The other windows can X'd
out for now. We can open them later if need be. This leaves just the console.

Type “help” at the prompt, or use the “?” menu to open the help browser. From there you can
search or browse the documentation. This is a good way to find out about all the capabilities of
Scilab. In this class we will use only a small subset of these.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 5/17

6 Interactive use
There are two basic ways to use Scilab/Matlab. As an interactive environment you can type a
command directly into the console at the prompt and Scilab will print the results. Then type
another command and so on. This is how we will start out using Scilab, as essentially a fancy
calculator. Later we'll learn how to use the editor to write structured programs.

6.1 Arithmetic

From the command line you can enter arithmetic expressions involving the addition, subtraction,
multiplication and division operators (+ - * /). For example

-->10+6/3-4*2
 ans =
 4.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 6/17

The ans variable stores the result of the last calculation and can be used in the next calculation.
Here is the same series of calculations performed one step at a time.

-->10
 ans =
 10.

-->ans+6/3
 ans =
 12.

-->ans-4*2
 ans =
 4.

Operator precedence rules apply. Operations are performed from left to right. Multiplication and
division are done before addition and subtraction. These can be overridden with parentheses. For
example

-->3+2/4
 ans =

 3.5

first divides 2 by 4 and then adds 3 to get 3.5; the + operator appears first (from left to right) but
multiplication has precedence over addition. However

-->(3+2)/4
 ans =

 1.25

Here the parenthesis tell Scilab to perform the addition operation first 3+2=5, followed by
division 5/4=1.25. I find it good practice in all but the simplest cases to use parentheses to
make the order of operations explicit. It is perfectly fine to use redundant parenthesis if this aids
the readability of an expression. For example the parenthesis in the expression

-->3+(2/4)
 ans =

 3.5

have no effect, but you might find they make the order of operations explicit.

A very useful feature of Scilab/Matlab is that by pressing the up or down arrow keys (Ctrl-P and
Ctrl-N) on your keyboard, you can cycle through the command line history. This allows you to
easily repeat previous commands. The commands can also be edited using the arrow and
Backspace keys.

Exercise 1: Use the console to calculate 1−1/ 2+1/3−1/4+1/5

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 7/17

6.2 functions

Scilab/Matlab also has many built-in functions. The help menu provides complete listings. For
example, the trig functions sin, cos, tan as well as their inverses asin, acos, and
atan are available. You use parentheses to denote the argument.

-->sin(0.5)
 ans =
 0.4794255

-->asin(ans)
 ans =
 0.5

In Scilab the atan function is an “overloaded function” which allows you to provide different
numbers of arguments. The expression atan(z) returns the angle between -p/2 and p/2 for
which the tan function is z. It is a “two-quadrant” inverse tangent. The expression atan(y,x)
returns the angle between -p and p for which the tan function is y/x and the angle corresponds to

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 8/17

the polar angle of the rectangular coordinates point (x,y). In Matlab the same functionality is
provided by atan2(y,x).

The standard trig functions operate in radians. Thus cos(1) is the cosine of 1 radian. Since it is
often useful to work in degrees, Scilab provides the functions cosd, sind, atand and so
on where the appended “d” indicates degrees. So

-->atan(1)
 ans =

 0.7853982

-->atand(1)
 ans =

 45.

The power operation is performed by the ^ operator.

-->2^3
 ans =
 8.

Negative and fractional powers are supported.

-->3^(-0.37)
 ans =
 0.6659861

Square roots are evaluated with the sqrt(x) command.

-->sqrt(2)
 ans =
 1.4142136

The exponential function e x is implemented as exp(x).

-->exp(3.2)
 ans =
 24.53253

The natural logarithm function ln x is, somewhat confusingly, implemented as log(x).

-->exp(3)
 ans =
 20.085537

-->log(ans)
 ans =
 3.

In many engineering books log  x is used to refer to the base 10 logarithm. In Scilab/Matlab the
base 10 logarithm is denoted by log10(x).

-->log10(2)
 ans =
 0.30103

-->10^ans
 ans =
 2.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 9/17

This distinction has caused problems for many an engineering student because we are so used to
using log(x) to denote the base-10 logarithm. You should pay particular attention to this.

Exercise 2: In the console, calculate tan (0.5) and sin(0.5)/cos (0.5) . Calculate
log10(2) , ln(2) , ln(10) and ln(2)/ ln(10) .

6.3 variables

You can define variables and then operate on those. For example,

-->x = 2
 x =
 2.

-->x^2+3*x+7
 ans =
17.

Typing in the variable name displays the variable value. If no such variable exists you'll get an
error message.

-->x
 x =
 2.

-->y
 !--error 4
undefined variable : y

6.4 strings

Variables are typically numerical in nature. However, variables can be assigned text values using
quotation marks, as in the following examples.

-->a = 'this is a string'
 a =
 this is a string

-->b = ' and here is some more text'
 b =
 and here is some more text

Note that in Scilab you can also use double quotes as in “this is a string” but not in
Matlab. Therefore if you use single quotes in Scilab your code will be more Matlab compatible.

You can concatenate two strings with the + operator in Scilab. In Matlab you can form an array or
use the strcat function.

-->a+b //a+b in Scilab, in Matlab [a,b] or strcat(a,b)
 ans =
 this is a string and here is some more text

String are particularly useful for labeling and describing numerical output.

6.5 constants (Scilab)

There are certain pre-defined constants built-in to Scilab. (Scilab calls these “permanent
variables.”) These are prefixed by the % symbol. For example,

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 10/17

-->%pi
 %pi =
 3.1415927

The % prefix “protects” the constant and keeps you from redefining it.

-->%pi = 3
 !--error 13
redefining permanent variable

Many people find this notation messy but it has a very real advantage (see next section). If you
don't like this you can simply create a regular variable with the same value, as in

-->pi = %pi
 pi =
 3.1415927

6.6 constants (Matlab)

Matlab implements constants as pre-defined, but unprotected variables. These are not prefixed by
the % symbol. For example,

>> pi
ans =
 3.1416

This is a weakness of Matlab, in my opinion, because you can accidentally redefine these, as in

>> pi = 3
pi =
 3

If you later use the variable pi thinking it's value is p you'll end up with erroneous results.

Exercise 3: In the console, assign the value 0.25 to the variable y. Then
calculate y2−2 y+3 .

6.7 complex numbers (Scilab/Matlab with a wrinkle)

Complex numbers are created by making use of the imaginary unit i , as in math texts. For
example z=23i is a complex number with “real part” 2 and “imaginary part” 3. In Scilab the
imaginary unit is the constant %i, as, for example, in

-->z = 2+3*%i
 z =

 2. + 3.i

Note that you need to explicitly include the multiplication operator *. You cannot just juxtapose
two variables to denote multiplication. If you don't like the % sign notation, you can define a
variable to equal %i and use that instead. For example,

-->j = %i
 j =
 i

-->z = 1+2*j
 z =
 1. + 2.i

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 11/17

In Matlab the imaginary unit is the predefined variable i (also j). Again this is dangerous because
you can redefine this variable accidentally. In fact i and j are very commonly used as index
variables in for loops.

>> i
ans =
 0 + 1.0000i

>> i = 2
i =
 2

To avoid this problem Matlab defines 1i as a protected variable equal to the imaginary unit

>> 2+3*1i

ans =

 2.0000 + 3.0000i

In Matlab you can leave out the * operator as in

-->3+2i
 ans =
 3.0000 + 2.0000i

which is a nice feature that Scilab does not have. Scilab/Matlab functions can operate on and
return complex numbers.

-->exp(%i*3)
 ans =
 - 0.9899925 + 0.1411200i

6.8 semicolon notation

When you type in an expression Scilab/Matlab echoes the answer to the console. If you terminate
the expression with a semicolon, nothing is echoed back. This is very useful if you are not
interested in intermediate results and only want to see a final answer. For example,

-->x = 2;

-->y = 3;

-->z = tan(y/x);

-->w = sqrt(z)
 w =
 3.7551857

Exercise 4: In the console, calculate √−4 and assign the value to variable z.
Verify that z2=−4 . Set u=2 i and calculate z−u .

6.9 Numerical format

Scilab allows you some control over the default appearance of numerical output. Later we will
see how to format displayed numbers in great detail. The format command allows you to select
either “v” or “e” formats. For example

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 12/17

-->format('v');
-->10*%pi
 ans =
 31.415927

-->format('e');
-->10*%pi
 ans =
 3.142D+01

The “D+01” notation represents the exponent of 10 in scientific notation. “D” stands for “double
precision” (more on that later). So, the last line above indicates a value 3.1412⋅101 . You can also
control the number of digits that Scilab outputs using an optional second argument, as in

-->format('v',5);
-->%pi
 %pi =
 3.14
-->format('v',10);

-->%pi
 %pi =
 3.1415927

In Matlab you can choose from various predefined formats such as

>> format short
>> pi
ans =
 3.1416

>> format long
>> pi
ans =
 3.141592653589793

See “help format” for more details.

7 Capturing an interactive session
Sometimes you want to save all the commands and results from an interactive Scilab/Matlab
console session. The easiest way to do this is to use the Edit menu. First click “Edit => Select
all” followed by “Edit => Copy” after which you can paste the results into Notepad or any other
text editor.

A more “premeditated” approach is to use the diary command. This opens a file and echos all
console output to the file.

-->diary('part1.txt')
 ans =

 1.

-->str = 'everything I type should be saved'
 str =

 everything I type should be saved

-->str = ' in file part1.txt'

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 13/17

 str =

 in file part1.txt

-->x = 3
 x =

 3.

-->sqrt(3)
 ans =

 1.7320508

-->diary(0)

The file part1.txt then contains

-->str = 'everything I type should be saved'
 str =

 everything I type should be saved

-->str = ' in file part1.txt'
 str =

 in file part1.txt

-->x = 3
 x =

 3.

-->sqrt(3)
 ans =

 1.7320508

-->diary(0)

that is, everything in the interactive session after the diary command. The diary command also
works in Matlab. The only difference is that the file closed with the command diary('off')
rather than diary(0).

8 Numerical limitations
If

x=(1+10−20)−1

then what is x? Obviously x=10−20 . Let's verify this with Scilab (or Matlab)

-->x = (1+1e-20)-1
 x =

 0.

Scilab says x=0 , which is wrong. Why? Is 10−20 too small for Scilab to represent?

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 14/17

-->x = 1e-20
 x =

 1.000D-20

Clearly that's not the problem. Instead we are seeing a round-off error. Scilab, like your
calculator, is limited in the number of digits it can use to represent a number.

Suppose we represent numbers in scientific notation as

x=±d 1 . d 2 d 3 d 4⋅10±e1 e2

where d 1 , d 2 , d 3 , d 4 , e1 , e2 are decimal digits (0-9). If y=+1.000⋅10+00 and z=+1.000⋅10−20

then y+z is exactly

y+z=+1.00000000000000000001⋅10+00

However, in our format we are limited to four digits of accuracy. Therefore we have to “round
off” the exact value as

y+z=+1.000⋅10+00

The tiny value 10−20 “fell off the end” so to speak. If we then calculate x=(y+z)−1 we get
x=0 .

Scilab stores numbers in “IEEE 754 double-precision binary floating-point format” using 64 bits
or 8 bytes of computer memory. One bit accounts for the ± sign, eleven bits for the exponent
and 52 bits for the fraction or “significand” or “mantissa.” Since 252≈5⋅1015 we can say that a
double precision number has roughly 15-16 decimal digits of accuracy. If a calculation requires
more digits of accuracy than this then it will not produce a correct result.

Now that's a lot of accuracy, but not enough to correctly calculate (1+10−20)−1 . Unfortunately
this can be a very practical problem for us when working with numerical methods. Consider the
definition of the derivative of the function f (x)

df
dx

≡lim
δ→0

f (x+δ)− f (x)
δ

We might estimate this numerically as

df
dx

≈
f (x+δ)− f (x)

δ

for δ “very small.” Ideally the approximation should get better and better.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Fig. 1: IEEE double precision floating point format.

Lecture 1: Introduction 15/17

Let's test this with f (x)=ex for which
df
dx∣x=0

=e0=1 .

-->delta = 1e-3;

-->(exp(delta)-exp(0))/delta
 ans =
 1.000500166708385

-->delta = 1e-6;

-->(exp(delta)-exp(0))/delta
 ans =
 1.000000499962184

-->delta = 1e-9;

-->(exp(delta)-exp(0))/delta
 ans =

 1.000000082740371

-->delta = 1e-12;

-->(exp(delta)-exp(0))/delta
 ans =

 1.000088900582341

-->delta = 1e-15;

-->(exp(delta)-exp(0))/delta
 ans =

 1.110223024625157

Notice as we decrease δ , initially the approximation to the derivative improves. For δ=10−9

we get

df
dx

≈1.000000082740371

which is accurate to about 8 digits. But further reduction of δ actually leads to worse accuracy.
For δ=10−15 we have

df
dx

≈1.110223024625157

which is not even accurate to 2 digits! In fact going to δ=10−20 results in

-->delta = 1e-20;

-->(exp(delta)-exp(0))/delta
 ans =

 0.

which is completely wrong! The lesson is that we need to consider numerical limitations very
carefully when we develop and implement numerical algorithms.

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 16/17

Exercise 5:
d
dx

sin(x)=cos (x) . Set x=1 and calculate cos (x) . For

h=10−1 ,10−6 ,10−12 ,10−18 calculate [sin (x+h)−sin (x)] /h and compare to
cos (x) .

EE 221 Numerical Computing Scott Hudson 2017-01-25

Lecture 1: Introduction 17/17

9 References
Numerical methods books – used as fundamental references throughout these notes

1. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical Recipes in
C, Cambridge, 1988, ISBN: 0-521-35465-X.

2. Recktenwald, G., Numerical Methods with Matlab: Implementation and Application,
Prentice Hall, 2000, ISBN: 0-201-30860-6.

3. Heath, M. T., Scientific Computing: An Introductory Survey, McGraw Hill, 2002, ISBN:
0-07-239910-4.

4. Urroz, G. E., Numerical and Statistical Methods with SCILAB for Science and
Engineering Vol. 1, BookSurge Publishing, 2001, ISBN-13: 978-1588983046.

5. http://www.mathworks.com/moler/

Software sites

1. http://www.scilab.org, official Scilab website

2. http://www.mathworks.com, official MatLab website

3. https://www.gnu.org/software/octave/, official GNU Octave website

4. https://www.python.org/, official Python website

5. http://www.gnu.org/software/gsl/, GNU Scientific Library

Wikipedia articles

1. http://en.wikipedia.org/wiki/Scilab

2. http://en.wikipedia.org/wiki/Matlab

3. http://en.wikipedia.org/wiki/GNU_Octave

4. http://en.wikipedia.org/wiki/Python_(programming_language)

EE 221 Numerical Computing Scott Hudson 2017-01-25

	1 Course goals
	2 Course topics
	3 Course structure and grading
	4 Scilab and Matlab
	4.1 History

	5 Installing and running Scilab
	6 Interactive use
	6.1 Arithmetic
	6.2 functions
	6.3 variables
	6.4 strings
	6.5 constants (Scilab)
	6.6 constants (Matlab)
	6.7 complex numbers (Scilab/Matlab with a wrinkle)
	6.8 semicolon notation
	6.9 Numerical format

	7 Capturing an interactive session
	8 Numerical limitations
	9 References

