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Abstract. We describe SORGATE, a procedure for extracting geometry
and texture from images of solids of revolution (SORs). It uses multivariate
optimization to determine the parameters of the camera in order to build
the viewing transform, as well as to reconstruct the geometry of the
SOR using the silhouette. In addition to individual image analyses, it
can use the data extracted from the same SOR viewed from different
directions to produce a single, composite texture which can be combined
with their blended geometries to produce a reconstructed 3D model. No
prior knowledge other than the object’s rotational symmetry is required.
Camera viewing parameters are derived directly from the image.
SORGATE is useful when 3D modeling of SORs is needed yet direct
measurement the physical objects is infeasible. As it does not require
camera calibration, it is also fast, inexpensive, and practical. One use case
might be for researchers and curators who wish to display and/or analyze
the art on historical vases; metric reconstruction and proper texturing of
the objects would allow this without requiring viewing in person.
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1 Introduction

The task of extracting 3D information about objects appearing in 2D images and
videos has wide application and is a fundamental research area in image-based
modeling and rendering. To simplify the problem, methods often focus on certain
classes of objects, such as those that exhibit symmetric properties. Accepting
such properties as given makes it easier to extract the information. A common
symmetry found in many everyday objects is rotational symmetry about an axis;
objects with this symmetry are known as solids of revolution (SORs).

We present here a method which we refer to as “SORGATE” (Solid of
Revolution Geometry And Texture Extraction) for doing this, as shown in
Figure 1. If we have multiple images of the same SOR from different viewpoints,
we can create a single composite texture that applies to as much of the SOR as
the individual images cover. We can then combine this with the merged geometry
information to, for example, produce a textured model of the SOR. We have
incorporated this procedure into an application that can be used by people who
have minimal knowledge of it.
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Fig. 1. Overview: Starting with one or more uncalibrated photographs (left) of an SOR,
we can extract geometry and textures (center), and apply them to 3D models (right).
(In this paper, pixels with no data (i.e. transparent) are coded in magenta.)

After this introduction, Section 2 highlights some similar work that has been
done in the past using different approaches. Section 3 describes our overall design
for the project, detailing how we apply the primary concepts and algorithms to
the SOR reconstruction and texture extraction problem. Section 4 focuses on
how the SORGATE application embodies the design and how a user should use
the application. Section 5 describes how we evaluated each piece of the design
separately, as well as discusses the results of the full process on real images.
Finally, Section 6 contains concluding remarks and possible avenues of future
work for the project.

This application is useful, for example, to analyze objects created on a pottery
wheel or lathe which may not be viewable or measurable in person, perhaps
because the object is inaccessible or no longer exists. It could also be used
commercially to quickly and inexpensively generate 3D textured models of these
objects for viewing on the web or for 3D printing duplicates to serve the purposes
of education or advertisement.

2 Previous Work

Image-based modeling and rendering, the extraction of both geometric and
texture information from images for the purpose of rendering, dates back to the
work of Debevec, Taylor, and Malik [7]. Like texturing itself, its goal is to reduce
the need for detailed modelling of both geometry and light interaction to improve
realism.

A common first step is to determine the camera pose from the image [2, 22].
Reducing the problem domain by assuming that the object is an SOR makes
the problem more tractable. Several approaches make use of projective geometry.
Chellali et al. use only object contours and projective geometry to build 3D
geometric models from a single image [5]. They do, however, require a calibration
object in image at the base of the SOR.
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Circular cross sections of SORs project to ellipses with certain invariant
properties and symmetries [17, 23]. Many techniques use this and therefore
require accurate fitting of ellipses to silhouette data. Liu and Hu use minimal
contour data to model spacecraft that exhibit SOR properties through accurate
ellipse fitting [14]. Their technique shows much improvement over older techniques
[8] when applied to multiple ellipses that share the same central axis. Wong,
et al. are also able to recover the geometry of an SOR from a single image by
determining the surface normals from the its silhouette and use this to recover
depth information [24]. Puech et al. explore a technique which extracts the three
Eulerian angles relating the camera and object coordinate systems, though their
technique requires two well-defined cross sections to be visible [18]. Zhang et al.
propose a technique that does not require any explicit cross sections be visible,
but rather a well-defined silhouette. This is useful for SORs with smooth surfaces
or which lack defined tops and/or bases [26].

Fig. 2. The SORGATE processing pipeline.

The work done by Columbo
et al. perhaps most closely re-
lates to ours differing in that
it constructs the viewing ma-
trix through projective geom-
etry rather than parameter-
ized viewing transforms [6, 16].
This is a more elegant ap-
proach than ours, but our ap-
proach of finding the viewing
parameters by optimization
greatly simplifies the image
stitching. Jain’s work in [11]
is also closely related, though
the author imposes more con-
straints on the problem, such
as assuming the camera is
coplanar with the top cross
section of the object.

3 Design

There are six major steps
(Figure 2) in the processing
pipeline for SORGATE. Start-
ing with an image, we first seg-

ment the foreground (the SOR itself) from the background (any other objects/-
surfaces). By applying filtering and edge detection techniques and analyzing the
curvature of the silhouette we then determine the circular planar base and top
cross sections of the SOR. Then we find the viewing parameters of the camera
that generated the image, as well as the radii of the base and top cross sections.
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Fig. 3. Image Segmentation (left) and Silhouette Extraction (right). (Image source: [1])

Next, we determine the geometry of the SOR: a set of (y, r) pairs estimating the
SOR’s radius as a function of height. In the following texture extraction step,
we create a flattened version of as much of the SOR’s texture as is visible in
the image. Finally, if we have multiple images of the same SOR from differing
viewpoints, we stitch them together to form a single texture, which we can then
merge back with the geometry to create an interactive 3D representation of the
SOR.

Space does not permit us to show how our initial design changed as a result of
implementation, so we have incorporated those insights in this “design” section.
Nor does it permit us to provide all of our formulae and algorithms and their
derivations. We provide both of them in [13].

Image Segmentation An important part of image analysis is segmentation:
isolating the pixels describing the object of interest from those that are irrelevant
[21].

As Figure 2 shows, the image is the only data input to SORGATE. Segmen-
tation is the first step. In our case, we use the very popular GrabCut algorithm
[3, 19] to segment the image. We used GrabCut primarily because it allowed for
adjustments to the segmentation at the pixel level, though one of the more recent
deep learning techniques as described in [9] would allow greater automation.

GrabCut usually needs an initial hint (here, a bounding box) from the user
about the location of the desired segment. Later, they may add additional “hints”
for refinements on later iterations to improve the segmentation. We allow for
these. Figure 3 (left) shows a typical result.

Silhouette Extraction After segmentation, the SOR is the only object in the
image. From this, we apply the commonly-used Canny edge detector [4] to extract
the contours, of which there may be several. This does require some interactive
and perhaps unintuitive adjustments to a set of parameters; thus, our method
would once again benefit from using a more precise and automated technique
here. Even so, using Canny’s technique, we finally take the contour with the
largest area to be the silhouette. Figure 3 (right) shows this.



Extracting Geometry and Texture from Images of Solids of Revolution 5

We need to extract the sub-silhouettes, those parts of the silhouette that arise
from the base and the top of the SOR. We assume that the SOR rests on the
xz (i.e., y = 0) plane and that the camera is positioned above it (i.e., oy > 0)
defining the z axis. The base sub-silhouette, then, is the projection of the front
part of the base.

If the camera height is less than the height of the SOR, the top sub-silhouette
is the projection of the front part (z > 0) of the SOR. Otherwise, the top sub-
silhouette is is the projection of the back part (z < 0) of the sub-silhouette. We
compute both possibilities and choose the solution that most closely matches
that of the bottom sub-silhouette.

To extract the sub-silhouettes, we look for discontinuities in the curvature.
Although we considered a number of methods for digital curvature estimation
[25], in the end we chose our own approach. We first smooth the pixel coordinates
with a Gaussian kernel, then compute the three-point curvature at each pixel. We
then smooth the curvatures with another Gaussian kernel and, starting from the
bottom or top extremum, find their left and right maxima. The sub-silhouettes,
then, lie between these two maxima.

Fig. 4. Camera Calibration

Camera Calibration
Our task is to map
each pixel inside the
silhouette to a 2D
texture. This requires
finding the transform
from any point on the
3D surface of the SOR
to the texture and its
inverse.

Due to the na-
ture of the SOR, the
intrinsically circular
base and top cross
sections project to
the elliptical sub-sil-
houettes. That pro-
jection, which deter-
mines both sub-silhou-
ettes, depends on the
camera’s pose.

In general, a cam-
era pose has six de-
grees of freedom: its
3D position (≡ õ) rel-

ative to the origin and its orientation (roll, pitch, and yaw). Due to the symmetry
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of the SOR, we can reduce this to five by requiring that the camera lie within
the yz plane (i.e, ox is 0).

A (homogeneous) point p̃ in the world frame of the SOR (typically, on its
surface) maps to a point p̃′ on the image as


p′

xp′
w

p′
yp′

w

p′
zp′

w

p′
w

 = MvpMcanMperspMcamp̃ (1)

where the matrix product is a typical “modelview” transform [20]. Mvp, the view-
port transform, depends on the (known) image horizontal and vertical resolutions.
Mcan, the canonical view transform, depends on the camera’s (unknown) field of
view and (known) image aspect ratio. Mcam, the camera transform, depends on
the (unknown) camera pose. Mpersp, the perspective transform, also depends on
the camera pose.

As the base of the SOR is at the origin, a uniform scale of all coordinates
produces no change in the image, so length units are arbitrary. We therefore
choose our length unit to be the SOR’s height. The top of the SOR is therefore
at y = 1.

We can determine the camera’s roll and yaw from the silhouette alone. In
the case of roll, we use principal component analysis [12] to find the silhouette’s
major and minor axes. The departure of one of them (usually the major) from
the vertical gives us the roll. Assuming that the center of the image corresponds
to the optical axis, the yaw may then be computed trigonometrically.

We therefore have the following six unknown parameters: two components
of the camera’s position, oy and oz, the camera’s vertical field of view, θy, the
camera’s pitch, βcam, and the radii of the base and top cross sections, rbase and
rtop.

Fig. 5. Viewing Ray-Silhouette Intersection

We initially tried to fit all parame-
ters at once but this approach proved
not to be robust. Instead, we deter-
mine their values using three multi-
variate “fits”, as shown in Figure 4.
Each of them uses Nelder-Mead op-
timization [15] to yield all or a sub-
set of the parameters. The first fit ap-
plies to the base sub-silhouette, yield-
ing values for all parameters except
rtop. The second fit applies to the top
sub-silhouette, yielding values for all
parameters except rbase. The third fit
applies to whole ellipses based on val-
ues from the first two fits and robustly
yields all parameters.
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Geometry Extraction We next extract the SOR’s geometry. Due to its axial
symmetry, this is simply the radius as function of height, i.e. r = r(y). To derive
this from the silhouette, we first treat it as a set of horizontal extrema {wj}. For
a given row of pixels j, wj is the distance between the left and right extrema
of the silhouette. We also start with a given N {yi, ri} “cross section” samples
of r(y), (0 ≤ i < N). The yi’s are uniformly spaced. The (unknown) ri’s are
initially zero.

It is important to keep in mind that not every row of the silhouette contributes
to r(y): The top or base may obstruct some part of the geometry. In an extreme
case, imagine a conical SOR viewed from a great height (oy ≫ 1). In that case,
the silhouette would only show the elliptical base of the SOR and no radii could
be extracted.

Looking at Figure 5, valid wj ’s that contribute to r(y) arise in situations
where a viewing ray is tangential to the normal n̂ at a “horizon point” p̃ on the
surface of the SOR. This corresponds to an angle α⊥, a particular value of the
azimuthal angle α measured clockwise from x̂ in the xz plane. All pixels with
α⊥ ≤ α ≤ π − α⊥ are visible.

In the orthographic view (oz → ∞), α⊥ = 0. Or if the SOR were a cylinder,
α⊥ would be a constant for any camera position. But for a general SOR, α⊥
depends on n̂, which depends on N̂ = (Nx, Ny, 0), the “unrotated” normal of the
SOR in the xy plane (for x ≥ 0, the right side of the image). In [13], we derive

α⊥ = arcsin
[

riNx + Ny(yi − oy)
ozNx

]
(2)

Fig. 6. Geometry Extraction

There are two complications: First,
N̂ depends on the derivative of r(y),
the quantity we’re trying to solve for.
To approximate N̂ at a cross-section
i, we compute the normal to paramet-
rically-fit parabolas based on previous
estimates of (yi−1, ri−1), (yi, ri), and
(yi+1, ri+1), so solving for ri requires
ri−1 and ri+1. This requires the solu-
tion to be iterative. The second com-
plication arises if the absolute value of
the arcsin argument in Equation (2)
exceeds 1. Then the camera cannot see
that horizon point, so that value of ri

is invalid, at least on that iteration.
To solve for {ri}, we developed the scaled difference method. Starting with

an initial {ri}, we project these to a set of silhouette widths {w′
i} and use the

departures of these from the known {wi}s to produce a new {ri}. When {w′
i}

falls within a given (RMSD) tolerance of the {wi}, we have our {ri}. It was
necessary to incorporate an empirically-determined scaling factor which slows
the rate of convergence in order to reduce the chance for the {ri}’s to produce
impossible α⊥ values. Figure 6 shows typical {ri} and {α⊥,i} results.
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Texture Extraction The inputs to texture extraction are the camera calibration
and the SOR geometry. The output is a texture of any desired resolution. Figure 7
shows a typical result.

Fig. 7. Texture Extraction

Rows correspond to varying α val-
ues, where π ≥ α ≥ 0. Since we only
have data for α⊥ ≤ α ≤ π−α⊥, we use
the transparency channel to indicate
valid pixels.

Figure 7 shows a typical result us-
ing a synthetic image of known geome-
try. Height corresponds to the vertical
path length along the side of the SOR.
We expect a certain amount of distor-
tion at the edges and where the SOR
is narrow. These correspond to regions
in the original image where the details
may be difficult to see.

Texture Stitching We have shown that we can capture the geometry of an
SOR from a single image, but that image can show at most half of the SOR’s
texture. It may be desirable to combine, or “stitch”, texture data from multiple
images into a single texture that can be used, for instance, to re-create a textured
3D model viewable from any direction, to 3D print a replica of the SOR, or to
display the whole of the SOR’s surface in 2D media (an archaeological research
publication, say).

So far, we have assumed that each image has its own coordinate system: The
SOR’s base is at the origin, its axis of symmetry is the y axis, and the camera
lies above the z axis. To stitch images together, we would further need to know
the relative azimuthal (α) angular differences of the images, but these are not
provided. Each texture being a parameterization of path length vs. α, there
should ideally be an exact match of the region of the SOR visible in both textures
when they are overlaid with the proper vertical1 and horizontal offsets.

Goshtasyby’s text [10] on image registration contains detailed descriptions of
algorithms for this, some of which have implementations available in computer
vision libraries. However, the type of registration we need to do is simplified
by the fact that there should be no rotation, scaling, or any complex type of
homology necessary. Alignment for stitching two textures can therefore be done
simply by finding horizontal and vertical displacements that minimize differences
(here, RMSD) between the overlapping regions. Figure 8 shows this.

1 Due to variations in camera pitch (βcam), textures need to be aligned vertically as
well as horizontally, if only slightly. Figure 8 exaggerates this for illustration.
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left texture right texture stitched texture

Fig. 8. Texture Stitching

4 Implementation

We implemented SORGATE as an application program sorgate in the Python
programming language, which supports a number of packages that were extremely
useful. We used NumPy for array computations, SciPy for optimization, and OpenCV
for image I/O, segmentation, filtering, edge detection, and contour extraction.

We built its user interface with tkinter and matplotlib. We rendered
textures using OpenGL, PIL, and GLFW. Space does not allow us to describe it in
detail, but Figure 9 shows its general operation. We also used it to create many
of the other images in this paper.

5 Evaluation

Synthetic Images The images shown in Figures 6 and 7 were created with a
custom-built raytracer at a resolution of 1000 × 1000 pixels. This allowed us
to compare the parameters and {ri} values sorgate extracted with the raytracer
inputs and guaranteed that the object itself was a true SOR.

For these images we used a uniform background, so segmentation and sil-
houette extraction were trivially correct. Extracted and true camera parameters
differed by no more than a fraction of a degree (for the angles) few percent (for
the positions) in the worst cases. Figures 6 to 9 show typical results for geometry,
texture extraction, and texture stitching. Figure 10 shows the quick convergence
of the {ri} fit results.

Real Images The goal of SORGATE is to extract data from real images, so those
are a critical part of its evaluation. For segmentation and silhouette extraction,
the GrabCut and Canny algorithms performed well on real images, as shown in
Figure 3. Extracted camera roll and yaw parameters were, again, within fractions
of a degree.
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Segmentation Silhouette Extraction

Camera Calibration Geometry Extraction Texture Stitching

Fig. 9. Overview of the sorgate Application. This illustrates the data flow shown in
Figure 2.

Fig. 10. {ri}
Fit Results

More complicated images, such as those with SORs whose
colors were similar to the background, or those with lighting that
reduced the prominence of silhouette, required a lot more time spent
making precise touch-ups and fine-tuning the Canny parameters
to produce meaningful results; in these scenarios, the early stages
of our method are quite cumbersome.

Figure 1 shows the result: We use stitched textures extracted
from several real images used to create a 3D model of the original
object. Although largely successful, certain images provided more
of a challenge for the camera calibration parameters. SORs with
rounded bases complicated sub-silhouette extraction, so it was
necessary to adjust the base and top radii manually. Problems also
arose with SORs where the viewing ray intersects both the stem
and base, such as a goblet viewed from a high camera position. For
this reason, we must, as we’ve done in Figure 10, limit the range
of {ri} values.

Problems arose from stitching as well, as shown in Figure 11 (the
same vase shown in Figure 1). Directional lighting and dealing with
a glossy surface with large uniform patches confused the simple
RMSD metric and we had to make several ad-hoc assumptions
about the horizontal and vertical search ranges to make this work.
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Before After

Fig. 11. Stitching Two Textures Taken from Real Images

6 Conclusions and Future Work

We have shown that SORGATE is capable of extracting geometry and texture
from a single SOR image and can combine multiple images of the same SOR into
a single texture.

It worked well with synthetic images, but real images required more work. Seg-
mentation, silhouette, and sub-silhouette extraction needed more user input, but
the resulting camera calibration and geometry and texture extractions for indi-
vidual images were satisfactory. Stitching multiple images together required more
ad hoc adjustments to account for lighting and the SOR’s material properties.

Future development of SORGATE should address these problems. We should
be able to take better advantage of the SOR’s symmetry and the smoothness of
the silhouette (except at the sub-silhouette limits). Also, once we have an initial
model of the SOR’s geometry, we should be able to incorporate a lighting model
to remove both diffuse and specular effects and retrieve the underlying material
properties for use in rendering the SOR with arbitrary lighting.

The incorporation of the projective geometry approach (as in [6, 16]) would
also be likely to increase robustness and move us towards our goal of being able
of extracting geometry and texture with a minimum of user intervention.
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