
COASTER: TEACHING COMPUTER GRAPHICS WITH A COMPREHENSIVE
PROJECT (A WORK IN PROGRESS)

Robert R. Lewis
School of EECS; Washington State University, Tri-Cities; Richland, WA 99354
(509) 372-7178
bobl@tricity.wsu.edu

ABSTRACT
We describe coaster, a project intended to teach an introductory computer graphics class
by means of a sequence of programming assignments. The assignments are incremental --
each one building on the previous ones -- and ultimately bring in most of the course
content. We discuss the sequence of assignments and how they relate to the topics, how
all assignments themselves share code (from the instructor's view), course policy
strategies needed to maintain student progress, and (preliminary) results on course
effectiveness.

1. INTRODUCTION
Computer graphics is a very demanding course for most Computer Science

students. In addition to programming skill, it requires more mathematics, especially
geometry and linear algebra, than most students encounter in any other CS course. To
create realistic three-dimensional images, knowledge of physics -- especially the
interaction of light and matter -- is also required. To complicate matters, most CS
students take the graphics course some several semesters after they took those non-CS
courses to satisfy departmental requirements and have had little occasion to make use of
that material since.

Like most CS courses, a graphics course should include some degree of
programming, but unlike most CS courses, the successful completion of such an
assignment is often self-evident -- the desired image is either visible or it is not -- and
does not require the extensive testing needed by, say, a compiler or a web-based database
application. (We draw a distinction here between the traditional graphics class that
focuses on producing three-dimensional -- but not stereo -- images and a class on
building a user interface.)

Another atypical aspect of a graphics course is that the student may show their
assignments to family and friends, who can be impressed visually with no further
explanation required by the student. This can be a strong motivation to the student.

One drawback, however, of this approach is that these assignments are often "one
shots": The student gets one assignment to draw a mesh, completes it, and then moves on
to one to draw a B-spline curve, and so on. While this allows a broad selection of topics
to be covered within the term, this makes the individual assignments less impressive and
therefore less motivational.

In this paper we will discuss an alternative approach, where students build a series
of ten assignments, each one evolving from the previous one by adding features they
learn about in the textbook [4] and corresponding lectures.

For this to work, the overall project has to be carefully chosen for its
comprehensive use of graphics topics and the lectures scheduled around its most logical

development path. The overall project in the class we describe here (as a work-in-
progress) was a first-person simulation of a rollercoaster called coaster.

Students did their work in C++ using the OpenGL graphics library, the GLUT
utility toolkit, and, in the final assignment, the GLSL shading language. The textbook [4]
covers all of these. By restricting the libraries to these alone, code was portable between
Linux, MacOS, and (using MinGW [2]) Windows platforms.

2. COURSE CONTENT
Figure 1 shows views of the individual programming assignments (hereafter,

"PA"s). The overall content of the course is not substantially different from that of other
computer graphics courses, but each PA is linked to a set of one or more traditional
lecture units with a balance of implementational, algorithmic, and mathematical topics.

Those projects and units are:
pa01_circles: Draw a regular polygon that, for a given pixel resolution, is

indistinguishable from a circle. This is a "warm up". Lectures: an overview of
computer graphics, the midpoint (Bresenham, essentially) line drawing algorithm

pa02_wire_track: Use a 3D trigonometrically-parameterized (easier to understand than a
spline) curve to create a simple track for the rollercoaster, including track-to-ground
support segments. Lectures: connections between computer graphics and geometry.

pa01_circles pa02_wire_track pa03_wire_car pa04_shaded_car

pa05_shaded_track pa06_surfaces pa07_first_person pa08_dynamics

pa09_textures pa10_programmable_gpu Figure 1: Sequence of coaster
Programming Assignments. Each PA builds
on previous ones.

pa03_wire_car: Putting the track aside for the time being, create the body of the
rollercoaster car. Lectures: regular mesh geometry and topology, creating solids of
rotation, how to use triangle strips to draw meshes efficiently

pa04_shaded_car: Draw the car again, but this time determine vertex colors based on
lighting calculations (not using OpenGL's) and use either flat or smooth shading.
Lectures: the use of vectors in graphics, computing normals from grids, Gouraud
shading, the physics and mathematics of reflectance

pa05_shaded_track: Using the same curve that was used for the wire track, create a
more realistic, 3D track with extruded tubes for the rails, the ties, and the support
structure. Lectures: extrusion and Frenet frames.

pa06_surfaces: Replace the trigonometrically-parameterized track curve with a B-spline
(permitting creative track designs) and use the provided Newell [3] teapot (Bézier
surface) data (as meshes) to render a teapot in the middle of the scene. Lectures:
parametric curves and surfaces

pa07_first_person: Use transforms to allow the user to "ride" in a moving car (at a
constant speed), controlling their position and (default) gaze direction. Lectures:
modeling and viewing (orthographic vs. perspective) transforms, clipping algorithms

pa08_dynamics: Incorporate physics to produce a more realistic ride experience,
including acceleration/deceleration and banking. Also replace reflectance calculations
with calls to OpenGL for performance speedup. Lectures: rollercoaster physics,
OpenGL lighting and material properties

pa09_textures: Apply a texture to the ground and use a "skybox" to create a surrounding
view of the distance. Apply an environment map based on the same skybox to the
rails so that they look like chrome. Lectures: texture and environment mapping,
mipmaps

pa10_programmable_gpu: Replace OpenGL lighting (i.e. the fixed GPU program) with
custom vertex and fragment shader (GLSL) programs. Also replace CPU-located
vertex data with GPU-located vertex buffer objects. Lectures: GLSL

3. CODE ORGANIZATION
coaster consists of just over 14,000 lines of C++ code and several auxiliary data

files (mostly textures) contained in the top or "root" directory (hereafter, "root") of the
source code tree. Beneath the root are 20 subdirectories, two for each PA: a "template"
subdirectory and a "solution" subdirectory. The contents of those subdirectories are
managed automatically: Each PA has a manifest (contained in the root's "Makefile")
that lists those source and auxiliary files that belong in both the template and solution
subdirectories for that PA.

In general, all instructor code modification is done in the root. make dependencies
are tracked, so that a change to a file in the root causes an update in all PA directories that
use it (although it's perfectly acceptable -- and sometimes necessary -- to regenerate all
subdirectory contents from scratch). Here, "update" means that the file in the root is
passed through a filter that extracts only that code used in an identically-named file in the
PA's template or solution subdirectory.

We will describe filtering in detail later, but by effectively keeping the code for all
ten PAs in the root, maintaining those 14,000 lines of code automatically maintains a total
of over 90,000 lines of code in the subdirectories. Furthermore, bug fixes that affect

multiple PA's are propagated automatically.
When a PA is made, students download from the course web page a compressed

tar archive (a "tarball") that contains the source and auxiliary files from that PA's
template directory together with a compiled (for Linux) executable from its solution
directory. Students therefore see a running version of what they're supposed to
accomplish for each PA, although we recommend that grading allow room for personal
creativity, especially in the later PAs.

The template files contain comments that students follow to fill in the "blanks" --
regions that require code -- in various methods and data structures. Generally, header files
(and therefore class definitions) do not contain blanks. The instructor creates those blanks
within methods (usually) which require the student to use the knowledge of both
mathematics and OpenGL they need to acquire. In the solution files, those blanks are
replaced with working code, which students never see (see below).

4. CODE FILTERING
As we have seen, one source (".cpp" or ".h") file in the root can give rise to as

many as 20 files in the subdirectories, each of them a distinct result of varying the
parameters of the filter it is passed through. We choose to implement "parameters" as a
set of C macro preprocessor (cpp -- not to be confused with the C++ compiler) tokens
which may either have specific values or may simply be defined or not defined. cpp
directives such as "#if" and "#ifdef" embedded in the source file can control exactly
what code the filter generates.

It would be possible to use the C++ compiler, which of course understands cpp
directives (indeed, it may use cpp directly), to generate the subdirectory file using the
"-E" command line option, but the trouble with doing this is that it will expand all
macros as well as transitively insert the contents of all "#include" directives, resulting
in a file that is large and unreadable. This is a serious drawback for files in template
subdirectories, which must be readable by students.

Fortunately, there is a solution. The open source program unifdef [1] acts like a
selective cpp: It will only expand macros that are specified on its command line. This
makes it the ideal filter for our purposes.

Figure 2 shows how filtering works. It contains a section (one method) of a
coaster source file as it would appear in the PD beside its four filtered template and
solution versions. Prior to pa08_dynamics, the code is omitted. When compiling
pa08_dynamics, the upper template and solution code is generated. For all assignments
after pa08_dynamics, the lower template and solution code is generated. Here, then, there
are four different code sequences generated. Some code gets generated more often than
this, while some code is used throughout all projects unchanged.

5. COURSE POLICIES
A great problem in incremental project courses like this one arises when students

fall behind. Students need to have at least a marginally-working PA completed before
moving on to the next one. Getting stuck on one PA might mean not only a low grade on
that PA but on all subsequent PAs. To minimize the impact of falling behind, we chose
several unusual (for a graphics course, at least) course policies:
- Students may collaborate with each other on code and may even turn in identical

submissions. (A student's individual content knowledge is determined by exams.)
- Each PA has a due date, but late projects are accepted up until the end of the semester
with only a 10% penalty.
- The instructor and teaching assistant(s) make themselves available to resolve problems
with a very short turnaround time, including evenings and weekends.

One implication of these policies is that at no time can we distribute the "correct"
solution to a PA, as students could simply turn that in as their (late) work. Even if those
policies were not in place, however, distributing solutions would not be desirable if we
expected to use the same incremental project in subsequent years.

original code (in root): template for pa08_dynamics:
#if PA >= PA08_DYNAMICS

const double Curve::zMax(void) const
// returns the maximum z value along the curve
{
if PA == PA08_DYNAMICS
 //
 // ASSIGNMENT (PA08)
 //
 // Move along the parametric curve looking
 // for the maximum z value, which you
 // return. Choose at least 1000 steps, but
 // don't overdo it.
 //
elif !defined(SOLUTION)
 //
 // Copy your previous (PA08) solution here.
 //
endif
ifdef SOLUTION

 // fairly but not ridiculously large
 int nSamples = 1024;

 double h = 1.0 / nSamples;
 Point3 p = (*this)(0.0);
 double result = p.u.g.z;
 for (int i = 0; i < nSamples; i++) {
 Point3 p = (*this)(i * h);
 if (p.u.g.z > result)
 result = p.u.g.z;
 }
 return result;
elif PA == PA08_DYNAMICS
 return 0.0; // replace
endif
}

#endif // PA >= PA08_DYNAMICS

const double Curve::zMax(void) const
// returns the maximum z value along the curve
{
 //
 // ASSIGNMENT (PA08)
 //
 // Move along the parametric curve looking
 // for the maximum z value, which you
 // return. Choose at least 1000 steps, but
 // don't overdo it.
 //
 return 0.0; // replace
}

solution for pa08_dynamics:
const double Curve::zMax(void) const
// returns the maximum z value along the curve
{
 //
 // ASSIGNMENT (PA08)
 //
 // Move along the parametric curve looking
 // for the maximum z value, which you
 // return. Choose at least 1000 steps, but
 // don't overdo it.
 //

 // fairly but not ridiculously large
 int nSamples = 1024;

 double h = 1.0 / nSamples;
 Point3 p = (*this)(0.0);
 double result = p.u.g.z;
 for (int i = 0; i < nSamples; i++) {
 Point3 p = (*this)(i * h);
 if (p.u.g.z > result)
 result = p.u.g.z;
 }
 return result;
}

subsequent templates:
const double Curve::zMax(void) const
// returns the maximum z value along the curve
{
 //
 // Copy your previous (PA08) solution here.
 //
}

subsequent solutions:
const double Curve::zMax(void) const
// returns the maximum z value along the curve
{
 // fairly but not ridiculously large
 int nSamples = 1024;

 double h = 1.0 / nSamples;
 Point3 p = (*this)(0.0);
 double result = p.u.g.z;
 for (int i = 0; i < nSamples; i++) {
 Point3 p = (*this)(i * h);
 if (p.u.g.z > result)
 result = p.u.g.z;
 }
 return result;
}

Figure 2: Example of Code Filtering. The code
above, a method needed for a dynamic
rollercoaster, is filtered into each of the four results
shown on the right. (Some cosmetic editing has
been done due to publication constraints.)

6. RESPONSE
On the basis of the first offering of this class, results are promising. Of the 23

students who completed the first PA, 18 remained in the class and 13 of them completed
all PA's. (It was not necessary to complete all assignments to pass the class.) This
compares favorably with pre-coaster attrition rates. (As we said above, computer
graphics is a very demanding course.) Despite the fact that collaboration was permitted, it
appears that only three pairs of students worked together.

The class was taught to two student populations: one local and one remote (via
closed-circuit television and shared LCD display). Local student evaluations were
uniformly positive ("I learned far more with this approach"), while remote student
evaluations were highly variable (from "a great learning tool" to the proverbial "worst
class I ever took"). We believe the latter is due to the fact that owing to budget cutbacks,
there were no "live" teaching assistants at the remote site and our email and in-person
visits were not sufficient to provide the help students needed. Local students, on the other
hand, were able to bring their laptops to our office, which allowed us to resolve problems
very quickly (while at the same time teaching graphics one-on-one, of course).

A notable -- if subjective -- indication of the success of coaster is in the quality
and number of questions that it elicited from students. Students were asking important
questions about meshing, illumination, geometry, textures, splines, and the like that their
predecessors had seldom been motivated enough to ask before. We believe it was because
these were things they needed to know to make their PAs work, and it was exciting.

7. CONCLUSIONS AND FUTURE DIRECTIONS
We believe coaster to be a more effective way to teach computer graphics than the

traditional approach, but it requires a high degree of interactivity between students and
instructor(s). (This is a good thing.)

Anticipated future improvements on coaster include
- tools to improve the code organization. In particular, we would like to analyze the
changes from one PA to the next to make sure the necessary topics are covered in lecture
with the appropriate weight and to match the time allotted for a student to make the
necessary modifications for a PA to the effort (lines of code, at least) involved in doing it.
- increasing the emphasis on GPU usage and texturing, possibly at the expense of
removing less important features such as environment mapping
- support for handheld and embedded graphics (via OpenGL ES)

We are also seeking technology that will allow more of a "look-over-the-student's-
shoulder" approach with remote students (working on their laptops) and a textbook that
more closedly matches our syllabus.

8. REFERENCES
[1] Finch, T., "unifdef -- selectively remove C preprocessor conditionals,"

dotat.at/prog/unifdef, retrieved 3/21/12.
[2] MinGW team, "MinGW | Minimalist GNU for Windows," www.mingw.org.

retrieved 3/21/12.
[3] Torrence, A., "Martin Newell's original teapot," Article No. 29, ACM

SIGGRAPH 2006.
[4] Wright, et al., OpenGL SuperBible (5th ed.), Addison-Wesley, 2011.

