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Abstract—This paper describes the scalability of linear
algebra kernels based on remote memory access approach.
The current approach differs from the other linear algebra
algorithms by the explicit use of shared memory and remote
memory access (RMA) communication rather than message
passing. It is suitable for clusters and scalable shared memory
systems. The experimental results on large scale systems
(Linux-Infiniband cluster, Cray XT) demonstrate consistent
performance advantages over ScaLAPACK suite, the leading
implementation of parallel linear algebra algorithms used
today. For example, on a Cray XT4 for a matrix size of
102400, our RMA-based matrix multiplication achieved over
55 teraflops while ScaLAPACK’s pdgemm measured close to
42 teraflops on 10000 processes.

I. INTRODUCTION

Linear algebra kernels are among the most important
tools in scientific computing. Computational scientists, when
feasible, attempt to reformulate the mathematical description
of their application in terms of linear algebra operations
(e.g. matrix multiplication, solution of linear equations) as
they can be performed efficiently on modern architectures.
By adopting a variety of techniques such as prefetching
or blocking to exploit the characteristics of the memory
hierarchy in current architectures, computer vendors have
optimized the standard serial linear algebra kernels in the
open source Basic Linear Algebra Subroutines (BLAS, [1])
and Linear Algebra PACKage (LAPACK, [2]) packages to
deliver performance as close to the peak processor perfor-
mance as possible.

Optimized parallel linear algebra kernels play a key
role in achieving scalability and performance for several
scientific applications. However, most parallel linear al-
gebra implementations used in today’s high end systems
are implemented on top of point-to-point message passing
operations such as the Message Passing Interface (MPI, [3])
and collective communications.

RDMA (Remote Direct Memory Access) and shared-
memory are the lowest-level (closest to hardware) and
highest-performing communication protocols on current
high-end systems. MPI implementations use these protocols,
however this adds overhead. There is a clear imbalance be-
tween advancement in parallel programming model research
and the use of message passing in linear algebra kernels.

Earlier researchers targeted their parallel linear algebra
implementations (e.g. PBLAS in ScaLAPACK [4]) for mas-
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sively parallel processor (MPP) architectures on which mes-
sage passing was the highest-performance and typically the
only communication protocol available. In particular, these
algorithms relied on optimized broadcasts or send-receive
operations.

Current and future architectures differ in several key
aspects from the earlier MPP systems. Regardless of the
processor architecture, both high-end systems (IBM Blue-
Gene, Cray XT4) and commodity systems (clusters) employ
a building block of multi-core (or upcoming manycore)
or symmetric multi-processor (SMP) nodes connected with
an interconnect network. All of these architectures have
hardware support for load/store communication within the
underlying SMP nodes. Although high-performance imple-
mentations of message passing can exploit shared memory
internally, their performance is less competitive than direct
loads and stores.

This paper discusses the performance and scalability of
two popular parallel linear algebra kernels - matrix multi-
plication and LU factorization. The conceptual architectural
model for which our algorithms were designed is a cluster of
multiprocessor nodes connected with a network that supports
remote memory access (RMA) communication (a.k.a. the
“put/get” model) between the nodes. Our implementation
uses the fastest communication model possible (i.e. shared
memory within an SMP node and RMA between nodes).

RMA is a simple communication model and, on mod-
ern systems, is often the fastest communication protocol
available, especially when implemented in hardware as zero-
copy RDMA write/read operations (e.g., OpenlB/Infiniband
[5], Portals/Seastar [6], DCMF/Bluegene [7]). RMA is often
used to implement the point-to-point MPI send/receive calls
[8], [9]. To address the historically growing gap between the
processor and network speed, our implementation relies on
the availability of the nonblocking mode of RMA operation
as the primary latency hiding mechanism (through overlap-
ping communication with computation) [10]. In addition,
each cluster node is assumed to provide efficient load/store
operations that allow direct access to the data.

In other words, a node of the cluster represents a shared
memory communication domain. Our algorithm is explicitly
aware of the task mapping to shared memory domains i.e.,
it is written to use shared memory to access parts of the
matrix held on processors within the domain of which the



given processor is a part, and nonblocking RMA operations
to access parts of the matrix outside of the local shared
memory domain (i.e., the RMA domain).

Our RMA-based parallel linear algebra algorithms
(dgemm and LU factorization) achieved consistent and very
competitive performance on two large scale systems (Infini-
band Linux cluster and Cray XT4). They are more general
and memory efficient, and they demonstrated excellent per-
formance and scalability on both platforms. For example,
on a Cray XT4 with 10000 processes and a matrix size of
102400, our RMA-based matrix multiplication achieved over
55 teraflops, while ScaLAPACK’s pdgemm measured close
to 42 teraflops.

The paper is organized as follows. The next section de-
scribes our RMA approach using ARMCI. Section 3 presents
the design and implementation of our RMA-based linear
algebra algorithms for clusters and shared memory systems.
Section 4 describes and analyzes performance results for the
RMA-based algorithms and ScaLAPACK. Finally, summary
and conclusions are given in Section 5.

II. REMOTE MEMORY ACCESS - ARMCI APPROACH

RMA operations facilitate an intermediate programming
model between message passing and shared memory. This
model combines some advantages of shared memory, such
as direct access to shared/global data, and the message-
passing model, namely the control over locality and data
distribution. Certain types of shared memory applications
can be implemented using this approach. In some other
cases, remote memory operations can be used as a high-
performance alternative to message passing [11]. On many
modern platforms, RMA is directly supported by hardware
and is the lowest level and often most efficient commu-
nication paradigm available [12]. An important difference
over the MPI-1 message-passing model is that RMA does
not require an explicit receive operation and thus offers
increased asynchrony of data transfers (see Figure 1).

In our implementations, we used a portable RMA in-
terface called Aggregate Remote Memory Copy Inter-
face (ARMCI) [13] for communication and Global Arrays
(GA) [14] for providing global views of distributed arrays.
ARMCI can be used for developing applications and for
creating a communication layer for libraries and compiler
runtime systems, especially for the global address space
languages/libraries (e.g., Global Arrays).

MPI-2 RMA [15] offers a model closely aligned with
traditional message passing (MPI-1). It includes high-level
concepts such as windows, epochs, and distinct progress
rules for passive and active target communication. This
model lacks support for classical shared-memory operation
and is clearly a mismatch with hardware evolution (e.g. multi
and many cores). Moreover, MPI-2 RMA is not optimal
for implementing global address space languages due to
excessive synchronization and its complex progress rules

[16]. For the above mentioned reasons, MPI-2 RMA is
not widely-used by programmers. The MPI Forum [3] is
planning to address these limitations of MPI-2 RMA, as a
part of the recently formed MPI-3 RMA initiative [17].

ARMCI exploits native network communication interfaces
(e.g. InfiniBand/OpenlB, Seastar/Portals/, Bluegene/DCMEF,
etc.) and system resources (such as shared memory)
to achieve the best possible performance of the remote
memory access/one-sided communication. It exploits high-
performance network protocols on high end systems such
as DCMF on BlueGene and Portals on Cray XT4. ARMCI
is also used to implement several parallel programming
models such as Co-Array Fortran [18], Global Arrays [14] or
GPSHMEM [19]. Due to the widespread popularity of MPI,
ARMCI is designed to be compatible with it. ARMCI offers
an extensive set of functionality in the area of RMA com-
munication: data transfer operations (put/get/accumulate),
atomic operations, memory management and synchroniza-
tion operations, and locks.

In scientific computing, applications often require trans-
fers of noncontiguous data that correspond to fragments
of multidimensional arrays, sparse matrices, or other more
complex data structures. The noncontiguous interfaces are
available in ARMCI to address these needs. ARMCI offers
blocking and nonblocking data transfer operations.

ARMCI relies on simpler progress rules, which are mo-
tivated by hardware support for RMA operations on the
current architectures [20]. The progress rules in ARMCI
follow those of the Cray SHMEM library. Unlike many
other portable RMA interfaces, such as the one-sided “ac-
tive” communication model in MPI-2, or put/get operations
in Generic Active Messages [21], GASNet [22], or Data
Movement and Control Substrate (DMCS) [23], ARMCI
guarantees that its one-sided operations are fully unilateral
(i.e., completed regardless of the actions taken by the remote
process). In particular, polling the application by the remote
process (implicit when making a library call, or explicit by
calling the provided polling interface) is not required for
communication progress. In this respect, ARMCI is similar
to the MPI-2 “passive target” and the vendor-specific RMA
interfaces.

III. RMA-BASED MATRIX MULTIPLICATION AND LU
FACTORIZATION

In this section, we will describe the parallel implemen-
tation of RMA-based dgemm (dense matrix-matrix multi-
plication) and dense LU factorization. Our implementation
effectively uses the following techniques and protocols to
achieve the best possible performance:

1) zero-copy protocol,

2) network latency hiding through effective non-blocking
communication,

3) explicit control of data locality and task mapping
(e.g., exploiting shared memory within SMP nodes and
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Figure 2. Matrix Distribution for Matrix Multiplication C' = AB. In a
4 x 4 process grid, to perform matrix-matrix multiply, process Ppo needs
blocks of matrix A from Pyg, Po1, Po2, and Pys, and blocks of matrix B
from P()()7 Pl(), PQ(), and Pgo.

RMA across nodes), and
4) reducing communication contention in access to the
data.

Implementing matrix multiplication and LU directly on top
of shared and remote memory access communication helps
us optimize the algorithm with a finer level of control over
data movement and hence achieve better performance.

Our matrix multiplication is an extended version of
SRUMMA [24]. SRUMMA is a block-based matrix mul-
tiply. The disadvantage with SRUMMA is as follows: if
the block size is less that problem size per process (i.e. in
Figure 2, the size of matrix owned by process Py is greater
than block size), then SRUMMA relies on optimized non-
contiguous RMA operations. On most networks, contiguous
RMA data transfer is faster (in terms of both latency
and bandwidth) than non-contiguous data transfer. Also, on
some systems (IBM BlueGene/DCMF), there is no native
support in DCMF for non-contoguous RMA data transfer.
To overcome this limitation, we extended SRUMMA to
support block-cyclic distribution. Thanks to block-cyclic
distribution, a process can own more than one block, and
therefore these blocks can easily map to the block size.
Since these blocks are contiguous in memory, we can get
the highest performance during data transfer.

A. Parallel Dense Matrix Multiply Algorithm

Consider a matrix multiplication operation C' = AB,
where A, B, and C have the same distribution of data across
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processes (Figure 2). Our algorithm is based on owner-
compute rule: The owner of a block in C' performs the
dgemmn for that block. As shown in Figure 2, to perform
a matrix-matrix multiply, process Py needs blocks of A
owned by processes FPyo, Po1, Po2, and Fys, and blocks of
matrix B owned by Py, Pig, P20, and P5g. In our algorithm,
Py first gets the blocks in A and B owned by Py itself and
computes part of C' In the next step, Ppo gets the blocks in A
and B owned by Py; and P, respectively, and accumulates
with the C. In a similar fashion, all other processes compute
the matrix multiply.

The parallel algorithm to perform RMA-based dgemm is
as follows:

1) Create global arrays A, B, and C based on block
cyclic distribution for the input matrix size. Since
A, B, and C are allocated using global arrays, this
memory is registered with the network (if required by
the network).

2) Generate a list of tasks to perform matrix multiplica-
tion on the block(s) owned by a process.

3) Reorder the tasklist in a such a way that the tasks that
involve matrix blocks stored in the shared memory
domain of the current processor are moved to the
beginning of the list. This is done to ensure overlap
of computations and nonblocking communication re-
quired to bring matrix blocks from other cluster nodes
to compute the other tasks on the list. Since the tasks
at the beginning of the list use data accessible directly,
we do not have to wait to start the pipeline.

4) For each task in the list,

« Issue a non-blocking get operation for the matrix
blocks involved in the next task on the list. Since
we always fetch the entire block (as the extended
SRUMMA is based on block-cyclic distribution),
it is contiguous in memory. The local buffer used
in the RMA get operation to get the remote data is
also registered with the network in advance (allo-
cated using ARMCI_Malloc_local ()). Since
both the source and destination buffers are con-
tiguous and registered with the network, we can



do zero copy non-blocking RDMA transfers.

o Wait for the non-blocking get operation corre-
spoding to the current task.

o Perform a serial dgemm.

As outlined above, this algorithm relies heavily on con-
tiguous zero-copy non-blocking RMA operations and does
not rely on send/recv or collective operations (such as
broadcast).

B. Parallel LU Algorithm

Consider a matrix A, whose LU factorization needs to be
computed. We create a global array A, by distributing the
data onto a two-dimensional grid of processes according to
the ScaLAPACK-style block-cyclic scheme to ensure good
load balance as well as the scalability of the algorithm. Let
us assume the block size is b x b. At each iteration of the
loop, a panel of b columns is factorized, and the trailing
submatrix is updated. For the sake of simplicity, we have
disabled partial pivoting as we make sure the input matrix
is diagonally dominant.

1) panel factorization

o The owner of Ay, performs a local LU solve:
Aoo — Loo, Uoo

o The owner of Ay does an RMA Put () followed
by RMA Put_Notify () to both the row and
column of processes. Since our data is contigu-
ous, and both the source and destination buffers
are registered, we can perform a zero-copy non-
blocking RDMA Put () here. The source process
initiates the Put () and returns immediately. It
does not wait for remote completion as that is
taken care of by RMA Put_Notify () which
notifies the remote process regarding completion.

o The remaining column processes wait on the no-
tify and, when received, call dtrsm () to perform
the panel factorization A1y — L.

o The remaining row processes wait on the notify
and, when received, call dtrsm () to perform the
panel factorization Ag; — Up;.

o All column and row processes do an RMA Put ()
followed by a Put_Notify () to the rest of the
processes that own the trailing submatrix.

2) matrix-matrix multiply
This is owner-compute rule:

Al = Ay — LU

The processes that own the blocks in the trailing
submatrix (A;1) wait for the Put_Notify () to get
L1y and Upy;. Then the trailing submatrix is updated,
which includes parallel matrix mutiply as outlined in
Section III-A. The processes do not need to synchro-
nize after this step, and they can proceed with the next
iteration.

For an efficient implementation of the LU algorithm, we
rely on the following assumptions:

e zero-copy RMA Put () and Put_Notify (),

« the ability to overlap computation within the network
communication on clusters is essential for latency hid-
ing,

o hardware-supported shared memory is the fastest pro-
tocol available on the shared memory architectures and
SMP nodes of the current clusters,

« to avoid dependencies on the OpenMP interfaces and
compiler technology, we need as much control over
shared memory communication as possible, and

o use of RMA is preferable to the send-receive model,
as it makes the implementation simpler and potentially
more efficient due to reduced synchronization.

IV. PERFORMANCE RESULTS

To demonstrate the performance and scalability (strong
and weak scaling) of our RMA-based parallel kernels
(dgemm and LU), we ran numerical experiments with vari-
ous problem (matrix) sizes on the following platforms:

e Linux cluster based on dual socket, 64-bit, Quad-
core AMD 2.2 GHz Opteron processors and Infiniband
network at Pacific Northwest national Laboratory [25]

o Cray XT4 at Oak Ridge National Laboratory [26]

We performed both strong and weak scaling experiments.
In strong scaling, we fixed the matrix size and measured
how the time varies with processor counts. In weak scaling,
we fixed the matrix size per processor and measured
how the time with varies with processor counts. On larger
problem sizes, computation cost predominates communica-
tion as these parallel kernels have O(N?) computations and
O(N?) communications. Keeping this in mind, we carefully
selected problem sizes (matrix size N from 2K to 100K)
such that the communication cost is a reasonable proportion
when compared to the computation cost.

We will call our RMA-based dense matrix-matrix multiply
and LU factorization kernels “RMA-dgemm” and “RMA-1LU”
respectively. We compared our kernels with the pdgemm ()
(parallel matrix multiply) and pdgetrf () (parallel LU
factorization) kernels from ScaLAPACK. As mentioned in
the previous section, for simplicity we assumed diago-
nally dominant matrices and therefore disabled pivoting in
LU factorization. We also manually disabled pivoting in
ScaLAPACK’s LU factorization as there is no direct method
to perform LU without partial pivoting in ScaLAPACK.
Optimum block sizes were chosed empirically for all matrix
sizes and processor counts.

Figure 3 presents intranode performance of RMA-based
kernels and ScaLAPACK. As expected, our kernels achieve
superior performance as they exploit direct load/store com-
munication within the underlying SMP nodes. Although the
high-performance implementations of message passing can
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exploit shared memory internally, the performance is less
competitive than direct loads and stores. In the best case,
for the matrix size of N = 4096, RMA-dgemm achieves
close to 58 GFlops when compared to ScaLAPACK dgemm
(20 GFlops) on 8 cores.

To validate the effectivennes of our RMA-based parallel
kernels, we ran numerical experiments with various problem
sizes ranging from 4K to 64K square matrices. Figures 4 and
5 illustrate the scalability and performance of RMA-dgemm
and RMA-LU respectively. RMA-based kernels consistently
outperform MPI-based ScaLAPACK kernels in most of the
cases. From Figure 4, RMA-dgemm scales well on both the
platforms up to 8192 processes. For this study, we chose
relatively smaller problem sizes for LU as the impact of
communication can be seen (e.g. scaling of N = 8000
up to 1600 procs). For larger problem sizes, RMA-LU and
ScaLAPACK-LU are comparable. Moreover, since parallel
LU algorithm is synchronous in nature RMA-LU performs
close to ScaLAPACK. However, parallel matrix multiply is
more asynchronous, i.e. no coordination between processes
are required during computation and therefore RMA model
is a natural fit. This is one of the reasons for smaller
performance gap in LU, when compared to parallel matrix
multiply kernel.

Table I presents the break down source of performance
improvements into contributions from 3 main protocols (i.e.
zero-copy, non-blocking, and network contention handling)
on 1024 processors for a matrix size of 16384. It shows that
zero copy is very imporant for performance of RMA-based
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Intranode Performance of dgemm (left) and LU (right) Algorithms (RMA-based and ScaLAPACK

Protocol Aggregate TFLOPS
Zero copy and non-blocking disabled 3.5
Zero copy disabled + non-blocking 4.1
Zero copy + non-blocking disabled 49
Zero copy + non-blocking 59
Zero copy + non-blocking + n/w contention 6.2

Table I
PERFORMANCE OF RMA-BASED DGEMM ON LINUX INFINIBAND
CLUSTER USING ZERO-COPY, NON-BLOCKING, AND NETWORK
CONTENTION HANDLING PROTOCOLS

dgemm. The best possible performance is achieved when
all the protocols (including zero copy, non-blocking, and
network contention handling ) are enabled in the algorithm.

Figure 6 presents the weak scaling performance of dgemm
on both platforms. In this experimental study, we fixed the
problem size per process to be N = 1024 and ran up
to 10000 processes. We noticed that the solution time is
constant for both RMA-based and ScaLAPACK kernels,
however RMA—-dgemm’s solution time is twice as fast as
ScaLAPACK’s pdgemm (). Moreover, RMA-dgemm mea-
sured close to 60 TFLOPS on 10000 processes when com-
pared to ScaLAPACK (42 TFLOPS), a 43% improvement.

V. CONCLUSION

This paper described and evaluated the design and imple-
mentation of two parallel linear algebra kernels based on the
RMA programming model for clusters based on multicore
processors and shared memory systems. We demonstrated
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the strong and weak scaling characteristics of the RMA-
based kernels. The experimental results validates the perfor-
mance and scalability of our algorithm in comparison to the
ScaLAPACK suite.

In the future, we intend to explore the possibilty of
optimizing the algorithm using RMA-based non-blocking
collectives instead of RMA Put/Get (which is point-
to-point). Our RMA-based collectives will be relatively
asynchronous when compared to the MPI-based collectives,
which are synchronous.
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