
GWVis : A Tool for Comparative Ground-Water Data1

Visualization2

Daniel M. Besta,∗,1, Robert R. Lewisb3

aPacific Northwest National Laboratory4

902 Battelle Boulevard5

P.O. Box 999, MSIN K7-286

Richland, WA 993527

bWashington State University8

School of EECS9

2710 University Drive10

Richland, WA 9935411

Abstract12

The Ground-Water Visualization application (GWVis) presents ground-water13

data visually in order to educate the public on ground-water issues. It is14

also intended for presentations to government and other funding agencies.15

GWVis works with ground-water level elevation data collected or modeled16

over a given time span, together with a matching fixed underlying terrain.17

GWVis was developed using the Python programming language in con-18

junction with associated extension packages and application program inter-19

faces such as OpenGLTMto improve performance and allow us fine control of20

attributes of the model such as lighting, material properties, transformations,21

and interpolation.22

There are currently several systems available for visualizing ground-water23

data. We classify these into two categories: research-oriented models and24

static presentation-based models. While both of them have their strengths,25

we find the former overly complex and non-intuitive and the latter not en-26

gaging and presenting problems showing multiple data dimensions.27

GWVis bridges the gap between static and research based visualizations28

by providing an intuitive, interactive design that allows participants to view29

the model from different perspectives, infer information about simulations,30

and view a comparison of two datasets. By incorporating scientific data in an31

environment that can be easily understood, GWVis allows that information32

to be presented to a large audience base.33

∗Corresponding author
Email addresses: daniel.best@pnl.gov (Daniel M. Best)

1Tel: 509-372-6728 Fax: 509-375-4933

Preprint submitted to Computers & Geosciences February 8, 2011



Key words: Ground-water, Hydrology, Visualization, Python34

1. Introduction35

Visualization of spatially-distributed data in general – and ground-water36

flow data in particular – is a growing field of research. Prior to three-37

dimensional graphical computer models, ground-water was most often rep-38

resented as two dimensional maps. Hydrogeologists now have research tools39

that allow for analysis of complex problems in three dimensions such as Li40

and Liu (2006). These research models have been created for use by domain41

experts.42

Compieta et al. (2007) point out that recently, interaction techniques43

for complex models have been advancing in usability. GWVis attempts44

to stand as an intermediary between what we will refer to as the classic45

static presentation-oriented (SPO) two dimensional maps and the dynamic46

research-oriented, (DRO) three dimensional visualizations. The following47

sections describe the purpose and the scope of work to build a solution to48

this problem. We then provide background on the current field of ground-49

water visualization, describe our solution to the problem, and finally present50

our results.51

1.1. Purpose52

This project provides a visual analytic tool that can be used for presen-53

tations and public dissemination. Visual analytic tools used to convey infor-54

mation, such as GWVis, are attractive because of the way human perception55

operates, allowing aspects of perceiving information to happen without con-56

scious thought, as discussed by Card et al. (1999). Maps harness this natural57

human capability to present large datasets which would normally produce a58

cognitive overload.59

Our aim is to produce a presentation-ready visual tool that allows com-60

parisons of ground-water flow simulations. To be presentation-ready, the61

tool will be a simplified visualization that conveys ground-water concepts62

without the use of complex interaction requirements. Comparison is a key63

element of GWVis, one that sets our tool apart from other visual tools. The64

capability to compare two simulations is an advantage to ground-water re-65

searchers utilizing the U.S. Geological Survey modular finite-difference flow66

model (MODFLOW ) system developed by McDonald and Harbaugh (2003).67

2



Instead of reading text files and comparing numeric values, we provide the ca-68

pability to immediately present differences visually. This includes the ability69

to compare time-varying data and simulations by animating the differences.70

1.2. Scope of Work71

GWVis ’s audience is comprised of individuals who are interested in the72

results of ground-water research. This interest is based on the desire to73

understand more about the environment: To know, for example, the result74

of adding more wells to an aquifer, or the need to perform further research75

when a model does not predict data accurately.76

Initially, GWVis uses data from the the study conducted by Hsieh et al.77

(2007), which consists of aquifer elevation data for head and underlying ter-78

rain, along with a multi-attribute dataset for the Spokane River that includes79

depth, width, and inflow. This data uses the widely-used MODFLOW data80

format, but GWVis could easily be adapted to any other format that provides81

similar data.82

In this particular case, the aquifer head elevation data consists of three83

aquifer layers on a 256 by 172 grid covering 326 square miles of the Spokane84

Valley-Rathdrum Prairie aquifer. All three layers have information recorded85

for 15 years and one month between September 1990 and September 2005.86

The iconography used in GWVis was obtained through the interaction87

with a researcher of hydrology and by evaluating various methods of color88

encoding the model. While this has yielded a visually pleasing image, further89

work needs to be done to relate the information users are seeing to what90

they are expecting to see. A rich source of information is found in the field91

of cartography. The relationship between cartographic symbolism and 3D92

ground-water visualization is important, however it is not the focus of this93

work. Future enhancements based on such research can be incorporated into94

the system without much adaptation of the code (see Section 7).95

2. Background96

Technologies that allow for the creation of three dimensional visualiza-97

tions were needed to implement GWVis. In addition, GWVis ’s development98

benefited from “rapid deployment” technologies that reduce the time between99

the identification of the need for a feature by the domain expert and that100

3



feature’s implementation. This participatory involvement of the domain ex-101

pert was critical to its success, reducing the time needed between discussing102

additions with the domain expert and gaining insight into their effectiveness.103

In this section, we will discuss all of these technologies.104

2.1. OpenGL105

OpenGL (see Shreiner et al. (2005)) is an application program interface106

(API) to graphics hardware that allows the programmer to produce inter-107

active three dimensional applications. OpenGL is the standard for three108

dimensional graphics. Many popular three dimensional visualization tools,109

such as OpenDX (Thompson et al. (2004)), use OpenGL as their foundation.110

As Shreiner et al. (2005) point out, OpenGL actually works on a very111

basic level of geometric primitives: points, lines, and triangles. Visualization112

systems build the shapes the user sees out of typically thousands of these113

primitives.114

The API is not tied to a specific windowing or operating system, thus pro-115

viding cross-platform capability. However, OpenGL is intentionally output-116

only: The user must provide the input part of the graphical user interface117

(GUI) by other means.118

OpenGL has kept pace with the rapid advance of graphics hardware tech-119

nology. Its most recent versions allow for such features as programmable120

shaders and vertex buffer objects. The latter are especially relevant for121

GWVis.122

2.2. Python123

Python (see, for example, Lutz (2007)) is a high-level programming lan-124

guage with attributes that make it attractive for use in visualization (see125

Langtangen (2006), for example). The pseudocode-like syntax of the lan-126

guage and built-in support for high-level constructs like lists, sets, and dic-127

tionaries results in highly-readable, elegant code that can be readily shared128

between programmers.129

While easy to read, Python remains a compact language, which results130

in less code doing more work, as opposed to, say, a C implementation. For131

GWVis, this represents the ability to make rapid changes and extensions in132

response to domain expert comments.133

Because of Python’s popularity there are many modules to extend its134

functionality. These include “wrappers” for existing APIs written in other135

4



languages. One such wrapper, pyOpenGL, exists for OpenGL and GWVis136

uses it extensively.137

2.3. NumPy138

NumPy is a numerical extension to the Python programming language,139

and is a cornerstone of scientific computing in Python, as discussed by Lang-140

tangen (2006) and Varoquaux et al. (2008). A core component of NumPy141

is the ndarray object, which represents arrays of arbitrary size and dimen-142

sionality and a wide variety of base types (e.g. integer, single precision float,143

double precision float, etc.). NumPy also provides Python access to common144

scientific calculations such as vector arithmetic and linear algebraic opera-145

tions over these arrays.146

Also present in the code is the ability to “slice” an array: to extract or147

operate on a subarray of a larger array without explicit (and, in Python,148

expensive) looping (see NumPy (2006) and Oliphant (2007)). NumPy also149

allows one array to be used to map the values of another, again without150

looping.151

Overall, NumPy allows Python developers to program numerically inten-152

sive programs while maintaining a reasonable level of time performance.153

2.4. wxPython154

wxPython is a GUI API built upon extensions created based on wxWid-155

gets, a windowing framework API written in C++, as described in Rappin156

and Dunn (2006). Because of this, wxPython retains the cross platform ca-157

pabilities of the base API.158

Like many GUI implementations, wxPython is an event-driven environ-159

ment where user inputs such as button clicks and mouse drags or system160

inputs such as redraw requests or timer expirations cause some action to be161

taken when the corresponding “event” occurs. wxPython calls user-specified162

“handler” functions to respond to such events asynchronously. In fact, after163

initialization of its internal data structures, everything a wxPython-based (or164

wxWidgets-based, for that matter) program does takes place in a handler of165

some kind.166

wxPython includes support for OpenGL “canvases”, which are rectangular167

areas in which OpenGL graphics output can take place with little or no168

overhead from the GUI.169

5



3. Related Work170

There are many applications and visualizations that cover aspects of171

viewing information associated with computational hydrology. Visualiza-172

tions range from hand-drawn two dimensional models to complex interactive173

three dimensional models. The following selection of visualizations exhibit174

attributes that relate to our work.175

3.1. Static, Presentation-Oriented (SPO)176

Examples of ground-water maps can be seen in the U.S. Geological Survey177

(USGS) report by Hsieh et al. (2007). In the study there are many different178

views of the same imagery of the Spokane Valley-Rathdrum Prairie Aquifer.179

Each image shows different information regarding the study, such as areas180

of shallow bedrock, water purveyor service areas, areal distribution of water181

purveyor wells, and sewer hookup density. Figure 1 is one of these images.182

The drawing shows the difference between simulated and measured heads for183

the aquifer over time.184

Multiple dimensions of data are difficult to represent on the same image,185

hence there are 51 different figures in the report, each of which has some186

important role in understanding the information being presented. While the187

information on any particular figure is being presented in an understandable188

manner, it is difficult to see correlations of the various attributes all at once.189

A reader of the report must turn to one particular view and then back to190

another to make any connections between them.191

3.2. Dynamic, Research-Oriented (DRO)192

A second domain of study for ground-water visualization centers around193

research. Analysts research topics such as pollution plumes and evaluating194

available resources.195

The performance of today’s workstations makes feasible a new type of196

analytical tool. Research models that a user interacts with have been de-197

veloped, such as Interactive Ground-Water (IGW ) (Li and Liu (2006)), Vi-198

sual MODFLOW (Schlumberger Water Services (2009)), Groundwater Vis-199

tas (Groundwater Vistas (2009)), and Aquaveo (formally GMS ) (Aquaveo200

(2008)).201

Let us consider IGW in particular. The model simulation can be stopped202

and adjusted at any time. It incorporates “level-of-detail” control: As a203

6



Figure 1: Changes in Ground-Water Levels for Spokane Valley-Rathdrum
Prairie Aquifer.

7



Figure 2: IGW Modeling Interface.

8



user zooms in and out of the model, the amount of information presented is204

increased or decreased accordingly to avoid clutter.205

To allow for general research use, IGW has been developed with eight206

modeling, analysis, and visualization engines. The system is a powerful an-207

alytic tool allowing the researcher to perform stochastic analysis, modify208

properties, and develop hierarchically-nested sub-models, among other tasks.209

Figure 2 shows IGW ’s GUI for changing model parameters.210

3.3. Spatially Distributed Data Interaction211

Recent research in the field of spatially-distributed data visualization in-212

cludes human factors. A major contributor to the development of this field213

is Google Earth. By default, Google Earth initially presents an image of the214

world. It is then left to the user to either type in a location or to use the215

mouse inputs to navigate. Navigation within the model is accomplished by216

having the user click, grab, and move the model with the mouse, producing217

an easily learned movement.218

Compieta et al. (2007) look to eliminate the visual / cognitive overload219

possible with DROs by providing two interfaces. The first uses the Google220

Earth style interaction, while the other incorporates the analytic tools desired221

by a domain expert to data mine the information.222

In that work, the human computer interaction (HCI) of the visualization223

is of special interest. The application looks to take advantage of the human’s224

ability to perceive visual patterns and interpret them, and to provide a means225

of interaction that is intuitive. System interaction is developed through the226

use of Google Earth technology.227

4. GWVis228

The implementation of GWVis took lessons learned from a prototype229

built in OpenDX (Thompson et al. (2004)) and expanded upon them. The230

program is written in Python using the wxPython, pyOpenGL, and NumPy231

packages heavily. Focus areas for GWVis to ensure its usability are the basic232

interaction mechanics, color encoding of the model, the ability to compare233

scenarios, and efficiency.234

To provide a solution that is usable, informative, and easy to comprehend,235

GWVis incorporates attributes from SPO, DRO, and HCI domains. Some236

elements are shared by multiple domains.237

Attributes GWVis uses from the SPO domain are:238

9



• visualization of change in aquifer elevation information,239

• simple layout of information using data encoding (referred to as the-240

matic cartography), and241

• geographical data that shows terrain, surface water, and aquifer loca-242

tion.243

GWVis uses the following attributes from the DRO domain:244

• incorporation of time and the ability to control the animation,245

• ability to interact with the model during the animation,246

• ability to pan and zoom into specific areas of interest, and247

• displaying some analytic features.248

Attributes included from HCI visualizations (which take cues from classic249

cartography) are:250

• interaction mechanism,251

• limiting cognitive overload, and252

• usability-focused development.253

4.1. Interaction254

Beyond the initial rendering of the model, interaction is the attribute that255

most affects how people perceive the utility of GWVis. Interaction modes256

such as being able to zoom in to a particular section and how to move about257

the model were continuously adapted during development.258

We started with classic navigational model (see, for example, Hill (2000))259

which allows six degrees of freedom. Three of them are positional and are,260

in this case, longitude, latitude, and altitude. The other three relate to261

orientation: roll (rotation about the x-axis, taken to be the initial direction262

of travel), pitch (rotation about the y-axis), yaw (rotation about the z-axis).263

Following Google Earth (when not in “flight simulator” mode, which we264

judged not appropriate for this application), we removed the “roll” degree265

of freedom: The vertical axis of the viewer is always perpendicular to the266

(geometric) horizon, except when looking straight down, when roll and yaw267

10



Table 1: User Interaction

Interaction Effect

mouse click and drag left or
right

changes the compass bearing
of the viewer (yaw)

mouse click and drag up or
down

changes the elevation of the
viewer’s horizon (pitch)

mouse scroll wheel forward or
backwards

moves the user forward or
backward at a constant alti-
tude

control button + mouse scroll
wheel forward or backwards

moves the user towards or
away from center of view
(dolly)

are equivalent. Table 1 shows the various ways a user can interact with268

GWVis :269

Interaction with the model using these methods allows a user to dolly270

in (move towards the center of view), shift the view left, right, up, and271

down, and move through the model at a constant altitude. All canvases are272

synchronized so that the user is viewing the same section of the aquifer at273

the same time in all of them, providing a mechanism for quick comparison274

of the images being shown.275

Finally, the model is be animated month-by-month. The animation is276

controlled using typical media player control buttons (play, forward, back-277

ward, rewind, and pause). Playing the animation iterates through all data278

so a user can see which areas of the aquifer are changing and which are279

remaining the same.280

4.2. Encoding Elevation with Histogram Equalization281

The ground-water elevation for the GWVis development data has a fairly282

small range: from 1400 to 2600 feet above sea level compared to 66.25 miles283

(349,800 feet) in horizontal extent. Most of the data values are clustered284

closely together. However, values change rapidly at the aquifer extremities.285

Because of the nonlinear data distribution, the color encoding of the model286

based on elevation data should not be a simple linear interpolation. To287

eliminate this issue, we incorporated color histogram equalization.288

11



Histogram equalization is a standard means to uniformly encode a set of289

data points having a non-uniform histogram, as seen in Bradsky and Kaehler290

(2008). We apply this technique to evenly distribute the elevation informa-291

tion and encode elevation as the saturation value of blue. This technique292

produces a range of color from white to blue. This allows the user to infer293

which sections of the aquifer are higher or lower than others.294

4.3. Comparison295

GWVis provides the ability to compare side-by-side scenario datasets,296

including their animations. SPO visualizations can provide this by showing297

two visualizations next to each other, but do not display differences as visu-298

alized quantities. DRO visualizations generally do not provide visualization299

for this purpose, either. We assert that showing the differences between two300

scenarios allows for basic analysis that would be beneficial to the intended301

audience.302

Figure 3 shows GWVis ’s layout: a small conventional pull-down menu303

and control area at the top, below which are two side-by-side “rate” canvases304

showing the two data sets individually. Below that, taking up approximately305

the bottom 2/3rds of the window, is the main “difference” canvas.306

4.3.1. The Rate Canvases307

In the rate canvases, GWVis uses color and position encoding to convey308

information about how the elevation for the visualization depicted on each309

canvas is rising or falling, as seen in Figure 4. The column is either green for310

increasing or red for decreasing elevation. An user can use this capability to311

determine which of the sets of data is changing the fastest where.312

Because there are about 44,000 grid cells for each month, a large number313

of columns could be shown. However, the domain expert advised that we314

simplify the visualization by reducing the number of columns depicted. To315

accomplish this, we take the mean of each 7 by 7 block of data points and316

draw a column with that value in the center of the block. Reducing the num-317

ber of columns simplifies the visualization, reducing information overload.318

4.3.2. The Difference Canvas319

This canvas shows the difference between the two scenarios at the current320

time step as one image (Figure 5). The right hand aquifer’s elevations are321

subtracted from the left hand aquifer’s. If, as we expect will be typical, the322

upper left quadrant is original flow data and the upper right quadrant is a323

12



(a) Initial View

(b) Moved In

Figure 3: GWVis Visualization Interface.

13



Figure 4: GWVis Rate Canvas.

simulation, this answers an important “what if” question for the user: “How324

would the changes being simulated affect the aquifer?”325

Figure 5: GWVis Difference Canvas.

4.4. Text326

Currently, minimal text has been added to the tool. The intent is to con-327

vey the information needed using predominantly graphical means. Textual328

that has been added are titles describing the current scenarios and noting329

that the bottom panel is a comparison of the two rate panels. In addition,330

14



the latitude and longitude of the current mouse position on the canvas is331

shown. Finally, the current month is displayed above the animation progress332

bar.333

4.5. Time Efficiency334

From the beginning, we identified time efficiency, primarily in the form of335

the response time to user input, as the major criterion for GWVis ’s accept-336

ability. In this section, we will discuss changes we made during the program’s337

design and implementation that most affected time efficiency.338

4.5.1. Overcoming Interpreter Overhead339

Python, being an interpreted language, is not intrinsically as fast as a340

compiled language. Considerable work has been done, however, in providing341

tools such as NumPy (see Section 2.3) whose effective use can minimize the342

interpreter penalty. We felt that the benefits of the language (see Section 2.2)343

justified the additional effort required to overcome the speed penalty.344

4.5.2. Improving Response Time345

Each input frame of data contains 256 × 172 = 44,032 values and there346

are 181 such frames in our target data set. Although there is less than 50%347

valid data in each frame (the aquifer does not cover the entire rectangular348

grid), it is still necessary to read in the full grid due to the file format. There349

is also terrain (“bottom”) data on the same grid, but that needs to be read350

in only once, as it is constant for each frame.351

To provide fast animation, we found it advantageous to read in all 181352

frames at startup time, incurring a small penalty in startup time. Having353

all of the data in memory allowed GWVis to approach interactive rates,354

but obtaining real interactivity required taking advantage of improvements355

offered by OpenGL, “vertex buffer objects” in particular. This relatively356

new feature allows the program to share graphical memory with the graphics357

processing unit (GPU), leading to extremely fast interaction, both for user-358

directed inspection and animation.359

Combining vertex buffer objects with NumPy ’s slicing feature allowed us360

to re-use the same longitude and latitude grid coordinates while replacing361

only the elevations (and redrawing the bottom data) from frame to frame.362

This virtually eliminated the interpreter overhead, as all of the critical pro-363

cessing took place either within NumPy (which is written in C) or the GPU364

itself.365

15



5. Results366

The goal of GWVis is to produce a presentation-ready visual tool that367

allows comparisons of ground-water flow simulations. This is accomplished368

by incorporating elements of DRO and SPO visualization and bridging the369

two methods. Key attributes that set GWVis apart are its ability to compare370

simulations and the style of interaction that lends itself to presentations.371

5.1. Comparison372

Of all the visualizations mentioned in Section 3, none provide the capa-373

bility to show a comparison between models. Many have the capability to374

run multiple simulations in the same workspace. However, this mechanism375

does not yield the same functionality that GWVis provides.376

It is easier to come to a conclusion to a problem when the correct informa-377

tion is present in an easy-to-see format, as shown by Kirsh (2000). Figure 6378

shows an example of this point. It is easier to sum a list of numbers using379

ruled paper rather than randomly placed on a page.380

The significance of this is that GWVis presents differences visually so381

the information is apparent. Other visual tools rely on the observer to com-382

pare one simulation to the next by looking at both windows. Each canvas383

in GWVis has the same transforms applied to it so that the views are syn-384

chronized. DRO views however, are not synchronized. Keeping the view the385

same enforces the ability to compare simulations together, viewing areas of386

interest and only having to navigate to that area in one canvas.387

Figure 6: Addition Ease Comparison Concept. (from Kirsh (2000))

Evaluation of simulation differences provides functionality for GWVis388

that is useful beyond presentations. An analyst can run a MODFLOW simu-389

lation and compare its results to field data, or to those of another simulation.390

16



5.2. Presentation391

GWVis is intended for use as a presentation tool in addition to basic ana-392

lytic capabilities. The information shown in the visualization is kept minimal393

due to the main audience for the tool. Kirsh (2000) explains that when a394

visualization adds more information than is needed, or the information is395

hard to find and comprehend then the viewer will suffer from information396

anxiety. This anxiety may lead to cognitive overload.397

DROmodels provide complex and powerful environments that allow anal-398

ysis of flow simulations. Presenting a DRO model to the public or govern-399

ment and funding agencies will provide too much information for the purpose400

of telling a story about ground-water flow. There are buttons, labels, and401

capabilities that clutter the visualization. These are valid attributes of an402

analytic tool, however they can produce anxiety in individuals who are not403

trained in the environment.404

SPO visualizations can be created in a way that minimizes information405

anxiety as GWVis does. However, the SPO models are unable to adapt their406

view to inquiries about specific areas of the aquifer. If the image was not407

created prior to the presentation, then the audience will be unable to view408

that requested information. GWVis can change its view and focus in on409

areas of interest in an aquifer. The navigation is learnable so if desired the410

viewer can interact with the tool themselves.411

6. Conclusions412

In conclusion, we visualize ground-water flow using a set of features that413

allow for analytic capability, while minimizing the effect of cognitive over-414

load. Analytic capability is provided two ways. First, the rate of change415

canvases show a viewer how a simulation changes over time. The visualiza-416

tion include elements of ground-water, such as water elevation, river position,417

and underlying terrain, that are helpful in the decision making process. Rate418

of change allows a researcher to have an overall picture of what the aquifer is419

doing. Secondly, we provide a difference canvas which allows quick analysis420

of changes made in various simulations. Being able to compare two sce-421

narios allows a researcher to analyze which changes to flow have affected a422

simulation in the ways they require for their study.423

The visualization interface is kept simple, relying on user input to move424

around the model. Interacting with the model is developed in a way the425

users are able to learn quickly. Ease of interaction can be attributed to the426

17



use of standard mechanisms for input. While uncluttered with data, GWVis427

provides enough information to allow presentations and basic flow analysis.428

We have adapted attributes of SPO and DRO visualizations and added a429

additional capabilities to produce a tool which allows comparison, is adapt-430

able to MODFLOW scenarios, and is interactive.431

7. Future Work432

GWVis is an ongoing research project. As such, new topics continue to433

be thought of that have yet to be explored. Some key areas that would be434

beneficial to the model include:435

1. Close the gap between the bottom of the aquifer and the head. Currently436

when viewing the model, a user sees a layer of water elevation data. It437

would be more accurate to represent the area between the head of the438

aquifer and the bottom as volume of water.439

2. Predefined fly-through routes. The capability of the model to move440

anywhere in the three dimensional space is already part of the project.441

It may be beneficial for display purposes to have a custom “flight path”442

file that would start the user in a location on the model and move without443

the need of user input.444

3. Animation generation. By combining flight path animations, compari-445

son animations, and text display, an overall animation could be created.446

This type of animation could be used for presentations, informational447

web sites, or unattended video displays.448

4. Addition of data dimensions. GWVis only has access to river, aquifer449

head, and aquifer bottom data. More data can be incorporated into the450

model such as the location of wells, active areas of the aquifer, and types451

of soil. It would benefit the model when done in a way that does not452

complicate the visualization further.453

5. Integration with Google Earth. The aquifer information would be treated454

as a body of water and placed in the appropriate location. This would455

give the added benefit of utilizing functionality that is currently present456

in Google Earth such as satellite imagery.457

6. Keyboard input. Currently input is through mouse movement and clicks.458

For ergonomic reasons it would be beneficial to accomplish the same459

tasks through keyboard input.460

18



7. Incorporate methods from cartography. The relationship between the461

height field visualization in GWVis and maps is a close one. Elements462

from cartography can be incorporated into the model to allow for familiar463

and effective symbolism of information.464

19



References465

Aquaveo, 2008. GMS. http://www.aquaveo.com/gms, [accessed 19 April,466

2009].467

Bradsky, G., Kaehler, A., 2008. Learning OpenCV, O’Reilly Media, Inc.,468

Sebastopol, CA, USA, 576pp.469

Card, S. K., Mackinlay, J. D., Shneiderman, B., 1999. Readings in Informa-470

tion Visualization: Using Vision to Think, Morgan Kaufmann Publishers471

Inc., San Francisco, CA, USA, 686pp.472

Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi,473

T., 2007. Exploratory spatio-temporal data mining and visualiza-474

tion. Journal of Visual Languages and Computing 18 (3), 255–279.475

doi:10.1016/j.jvlc.2007.02.006.476

Groundwater Vistas, 2009. Groundwater Vistas. http://www.477

groundwater-vistas.com/gwv/detailed_description.php?products_478

id=43, [accessed 19 April, 2009].479

Hill, F. J., 2000. Computer Graphics Using OpenGL, Prentice Hall PTR,480

Upper Saddle River, NJ, USA, 922pp.481

Hsieh, P. A., Barber, M. E., Contor, B. A., Hossain Md., A., Johnson, G. S.,482

Jones, J. L., Wylie, A. H., 2007. Ground-water flow model for the Spokane483

Valley-Rathdrum-Prairie aquifer, Spokane County, Washington, and Bon-484

ner and Kootenai Counties, Idaho. Scientific Investigations Report 2007-485

5004, U.S. Geological Survey, 78pp.486

Kirsh, D., 2000. A few thoughts on cognitive overload. Intellectica 30, 19–51.487

Langtangen, H. P., 2006. Python Scripting for Computational Science,488

Springer Verlag, Berlin, 780pp.489

Li, S.-G., Liu, Q., 2006. A real-time, interactive steering environment490

for integrated ground water modeling. Ground Water 44 (5), 758–763.491

doi:10.1111/j.1745-6584.2006.00225.x.492

Lutz, M., October 2007. Learning Python, 3rd edn., O’Reilly Media, Inc.,493

Sebastopol, CA, USA, 1216pp.494

20



McDonald, M. G., Harbaugh, A. W., 2003. The history of MODFLOW.495

Ground Water 41 (2), 280. doi:10.1111/j.1745-6584.2003.tb02591.x.496

Numpy, 2006. Guide to NumPy. NumPy., Provo, UT, USA, 378pp.497

Oliphant, T. E., 2007. Python for scientific computing. Computing in Science498

and Engineering 9 (3), 10–20. doi:10.1109/MCSE.2007.58.499

Rappin, N., Dunn, R., 2006. wxPython in Action, Manning Publications Co.,500

Greenwich, CT, USA, 620pp.501

Schlumberger Water Services, 2009. Visual Modflow. http://www.502

swstechnology.com/software_product.php?ID=29, [accessed 19 April,503

2009].504

Shreiner, D., Woo, M., Neider, J., Davis, T., 2005. OpenGL Programming505

Guide, 5th edn., Addison Wesley, Upper Saddle River, NJ, USA, 928pp.506

Thompson, D., Braun, J., Ford, R., 2004. OpenDX Paths to Visualization,507

2nd edn., Visualization and Imagery Solutions, Inc., Missoula, MT, USA508

206pp.509

Varoquaux, G., Vaught, T., Millman, J. (Eds.), 2008. Proceedings of the 7th510

Python in Science conference. Pasadena, CA, USA, 78pp.511

21


