GpuPy: Transparently and Efficiently Using a
GPU for Numerical Computation in Python
BENJAMIN EITZEN and ROBERT R. LEWIS

School of EECS
Washington State University

Originally intended for graphics, a Graphics Processing Unit (GPU) is a powerful parallel processor
capable of performing more floating point calculations per second than a traditional CPU. How-
ever, the key drawback against the widespread adoption of GPUs for general purpose computing
is the difficulty of programming them. Programming a GPU requires non-traditional program-
ming techniques, new languages, and knowledge of graphics APIs. GpuPy attempts to eliminate
these drawbacks while still taking full advantage of a GPU. It does this by providing a GPU
implementation of NumPy, an existing numerical API for the Python programming language.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); D.3.4 [Programming Languages]: Processors; G.4.0 [Math-
ematical Software]: General
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1. INTRODUCTION

The specialized processors on modern video cards are called Graphics Processing
Units, or GPUs. For certain algorithms, a GPU can outperform a modern CPU by
a substantial factor [Luebke et al. 2004]. The goal of GpuPy is to provide a Python
interface for taking advantage of the strengths of a GPU.

GpuPy is an extension to the Python programming language which provides an
interface modeled after the popular NumPy Python extension [van Rossum 2008b].
Implementing an existing interface on a GPU is beneficial because it eliminates
the need to learn a new API and lets existing programs run faster without being
rewritten. For some programs, GpuPy provides a drop-in replacement for Num.Py;
for others, code must be modified.

Section 2 provides background information necessary to understand the remain-
der of this paper. Section 3 gives a high-level description of GpuPy. Section 4
details the implementation of GpuPy. Section 5 evaluates the performance and ac-
curacy of GpuPy. Section 6 concludes, and Section 7 details potential future work
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involving GpuPy.

2. BACKGROUND

In order to understand GpuPy, an overview of the underlying technology involved
is helpful. The following sections discuss the necessary background information.

2.1 GPUs

Virtually all modern desktop and laptop computers contain a GPU, either inte-
grated into the motherboard or on a separate graphics card. A GPU is a parallel
processor designed to render images. Building on graphics accelerator technology,
GPUs have evolved rapidly in the last several years; much more so than traditional
CPUs such as those manufactured by Intel and AMD. Their degree of parallelism
is constantly increasing and they are thus capable of performing increasingly more
floating point operations per second than traditional CPUs.

2.1.1 The OpenGL Rendering Pipeline. GPUs are designed to render complex
3D geometry in real time. In general, input is passed to a GPU as a collection of
vertices, matrices, texture coordinates, textures, and other state variables (lighting
parameters, etc.). A GPU processes this input and renders the image into a block
of memory called a “frame buffer” which is then displayed on some sort of output
device, usually a monitor. This sequence of steps is called the rendering pipeline.

For example, the sequence of actions performed by the rendering pipeline to
render a quadrilateral would be:

—A program provides the four vertices that make up the corners of the quadri-
lateral. At this point, coordinates are usually defined in a floating point object
coordinate system, which disregards both the position and orientation of the ob-
ject in the overall scene and the point of view of the observer. Each vertex may
have associated with it a variety of attributes, such as color, a surface normal,
and one or more texture coordinates.

—In the per-vertex operations and primitive assembly stage, each vertex is trans-
formed from object coordinates to eye coordinates using the model-view matrix,
allowing the vertices to appear as they would if viewed from an arbitrary loca-
tion. The position and surface normal of a vertex are changed, but the color and
texture coordinate(s) remain the same. The vertices are then transformed again,
this time by the projection matrix, which maps the vertices to a view volume
and possibly adjusts them to account for perspective (more distant objects ap-
pear smaller). The vertices are grouped into primitives (points, line segments,
or triangles) and any vertices that fall outisde the view volume are discarded, or
“clipped”.

—The next stage is rasterization, which generates “fragments,” which are like pix-
els, but may contain information besides color for use in the final phase such as
transparency, a depth value and texture coordinate(s). These values are usually
calculated by interpolating the corresponding values from the vertices across the
face of the primitive.

—At last, the resulting fragments are passed to the per-fragment operations stage,
which performs final processing on the fragments before outputting them to the
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frame buffer. One common operation performed in this stage is depth buffering.
With depth buffering, an incoming fragment only results in a pixel when the
fragment’s depth value is less than the depth of the existing pixel at the same
location. This ensures that pixels nearer to the observer conceal pixels further
away.

For a more in-depth description of the OpenGL rendering pipeline, see [Segal
and Akeley 2006].

2.1.2  Texture Mapping. A texture map is a 1-, 2-, or 3-dimensional array of
elements, typically containing image data. An individual texture element, called
a “texel”, has one or more scalar components. Each texel typically contains three
components describing a red-green-blue (RGB) color, possibly with a fourth opacity
or “alpha” (A) component. In the past, the components were represented by 8-bit
unsigned integers, but GPUs can now represent components as 32-bit floating point
values (which consequently makes them of interest for numerical computation).

Texture maps are used by OpenGL to map an image onto the surface of a prim-
itive. If texturing is enabled, the rasterization stage calculates the color or lighting
of each fragment using values from one or more texture maps. Since texture co-
ordinates are bound to vertices, texture coordinates for a particular pixel may be
(linearly) interpolated from neighboring vertices.

2.1.3  Programming the Pipeline. Traditionally, the per-vertex operations and
primitive assembly and per-fragment operations stages performed fixed functions.
In modern GPUs, however, these stages are fully programmable using short pro-
grams called “shaders”.

Like conventional CPUs, shader operation is controlled by a stored program in
an underlying machine language which is not generally programmable by humans.
From the beginning, individual GPU manufacturers have therefore provided GPU-
specific assembler languages with mnemonics for the machine opcodes, macros, and
other typical assembler features.

More recently, however, to make GPU programming accessible to a wider au-
dience, higher-level shader languages have been developed which resemble con-
ventional programming languages (typically C), the most popular of which are
NVIDIA’s Cg [Fernando and Kilgard 2003], Microsoft’s High-Level Shading Lan-
guage (HLSL) [Microsoft 2008], and the OpenGL Shading Language (GLSL) [Rost
2006]. These also have a greater degree of portability between GPU models than
the assemblers and provide other conveniences.

Most current pipelines contain three stages that are programmable: fragment
shading, vertex shading, and geometry shading.

Vertex shaders run during the early stages of the pipeline. They take a single
vertex as input and produce a single vertex as output (there is no way to create
or destroy a vertex with a vertex shader). They have access to global parameters
such as light and material properties. A vertex shader is executed once for each
input vertex. Vertex shaders are independent of each other and can therefore be
performed in parallel. A relatively new development, geometry shaders run after
vertex shaders but before fragment shaders. They acccept multiple vertices as input
and are allowed to create new vertices. The vertices output by a geometry shader
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void glDrawQuad (int x, int y, int w, int h)

{
glBegin (GL_QUADS) ;
glTexCoord2i(x, y); glVertex2i (x, y);
glTexCoord2i(x, y + h); glVertex2i(x, y + h);
glTexCoord2i(x + w, y + h); glVertex2i(x + w, y + h);
glTexCoord2i(x + w, y); glVertex2i (x + w, y);
glEnd Q) ;

}

Fig. 1. OpenGL Code to Draw a Quadrilateral. This code triggers execution of both vertex and
fragment shaders in a typical array computation.

continue through the rest of the pipeline as though they were provided explicitly by
the controlling program. Neither vertex shaders nor geometry shaders are currently
used by GpuPy.

Fragment shaders run during the per-fragment operations stage. They accept a
single input fragment and produce a single output pixel. Fragment shaders have
access to the same global parameters as vertex shaders — including interpolated
attributes — but are also able to read and compute with values from texture memory.
When a fragment shader is enabled, it is executed once for each input fragment.
Like vertices, the fact that fragments are computed independently allows them to
be processed in parallel.

2.2 Stream Processing

Stream processing is a model of computation in which a “kernel” function is ap-
plied to each element in a stream of data. Because each element of the data stream
is processed independently, stream processing can easily be done in parallel. Al-
though this can be accomplished to some extent using standard hardware, custom
hardware is often used [Ciricescu et al. 2003]. As will be discussed in the following
sections, both GPUs and NumPy fit into the stream processing model. For exam-
ples of stream processing applications, see [Dally et al. 2004] and [Gummaraju and
Rosenblum 2005].

2.3 GPGPU

In the last few years, a significant amount of work has gone into developing ways
to use GPUs to perform general purpose computations. General Purpose GPU
(GPGPU) [GPGPU 2008] is an initiative to study the use of GPUs to perform
general purpose computations instead of specialized graphics algorithms. The two
most important GPU features critical to the success of GPGPU are a programmable
pipeline and floating point textures.

The rendering pipeline described above can be exploited to act as stream proces-
sor [Venkatasubramanian 2003; Owens et al. 2000]. This is done by using texture
maps to hold data streams and shaders to implement kernels. For example, when
fragment shading is enabled and a texture-mapped quadrilateral is properly ren-
dered, the fragment program will be executed once for each interior fragment of the
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quadrilateral. The interpolated texture coordinates for each fragment are used to
look up values from texture maps. Instead of a frame buffer, the output of the frag-
ment shader is then written into texture memory using the OpenGL Framebuffer
Object Extension[Akeley et al. 2008].

Texture coordinates must be chosen that cause each fragment’s interpolated tex-
ture coordinates to reference the correct texel. The code in Figure 1 renders a
quadrilateral with texture coordinates of the four vertices set to the positions of
the vertices. This generates interpolated texture coordinates that sample all of the
texels in a texture of the same size.

There are a number of limitations that must be observed when writing a frag-
ment shader. The destination is fixed for each execution of a shader. This means
that a shader chooses the value, but cannot choose the location to which it will
be written. A texture also may not be written to if it will be read again while
rendering the current primitive. There are also limitations on the resources that
can be used during a shader execution. The nature of the resource limits depend
on configuration, but generally reflect limitations of the GPU hardware itself such
as maximum number of instructions, maximum number of texture instructions, or
maximum number of temporary registers. This will be covered in more depth in a
later section.

While some higher-end GPUs, such as NVIDIA’s Quadro product line, support
IEEE single-precision values, others do not. Because of this, the results of GPU and
CPU algorithm implementations may differ. For many applications this is perfectly
acceptable but for others it may be problematic.

GPUs also support a 16-bit “half-precision” floating point format, which supports
a sign bit, a ten bit characteristic, and a five bit (biased) exponent. If an application
can tolerate the reduction in precision (e.g. anything intended solely human visual
consumption), performance and memory usage may be improved by using this.
Although the current IEEE floating point standard does not include a 16-bit type,
a draft revision of the standard [IEEE P754 2006] does.

2.4 Python

Python [van Rossum 2008b] is a popular object-oriented programming language
that is in wide use throughout the computer industry. Python is an interpreted
language like Java or Perl, and like these languages, makes use of a virtual machine.
It is designed to be easy to use, yet is fully featured. Python is very portable and
runs on a variety of platforms. In this section, we’ll cover the features of Python
that are most relevant to GpuPy.

2.4.1 Extending Python. An important feature of Python is that it was carefully
designed to be easily extensible [van Rossum 2008a]. This is accomplished by
allowing modules written in C or C++ to function equivalently to modules written
in Python, including the addition of new data, functions, and classes. This is done
with C structs whose members include callbacks (function pointers) and auxiliary
data.

The callbacks are organized into groups of related operations called protocols,
and a new class may implement whichever protocols are appropriate. Unneeded or
irrelevant callback functions may be left unimplemented. The current version of
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Python defines these protocols:

—The object protocol provides the basic functionality that most objects will im-
plement.

—The number protocol provides binary operations such as addition and subtrac-
tion.

—The sequence protocol provides operations required to treat objects like arrays
by indexing into them using non-negative integers.

—The mapping protocol is similar to the sequence protocol, but allows any Python
object to be used as an index, rather than just nonnegative integers.

—The iterator protocol provides a way to visit each member of a container object.

—The buffer protocol allows the memory containing an object’s data to be accessed
directly from outside the extension module. It is widely used to share data
between extension modules.

2.4.2  Slicing. Python has a feature called “slicing” that allows subsets of se-
quences to be selected using the mapping protocol. A slice object is composed of
three integers: start, stop, and step. A slice is represented in Python by three
integers separated by colons. Integers omitted take on default values. The default
for start is 0, the default for stop is the length of the sequence being sliced, and
the default for step is 1. When a slice object is used to index a sequence object,
a new sequence constructed by selecting elements from the original array starting
with start (i.e., inclusive), ending just before stop (i.e., exclusive), and skipping
step elements between selections. The three slice arguments can be thought of as
the three parameters of a for C loop that produce the desired indices:

for (i = start; i < stop; i += step)
/* access element i of the array */

2.5 NumPy

NumPy [Oliphant 2007] is a Python extension module written by Travis Oliphant
and others. Tt is the successor to Numeric [Hugunin 1995] and incorporates features
also developed by Numarray [Greenfield et al. 2003], two previous numerical Python
extensions. In its C internals, NumPy provides several Python classes (in C form),
the most important of which is NDarray, which is used to implement N-dimensional
arrays.

NumPy allows mathematical operations to be performed on arrays as though they
were scalars. When an arithmetic operation is performed on one or more NDarrays,
the operation is applied to corresponding elements (conceptually) in parallel. The
result is a new NDarray object whose dimensions are determined by the shapes of
the operands.

Much of this functionality is incorporated in NumPy’s “universal functions” or
ufuncs, which may resemble fundamental mathematical functions such as sin() or
abs(), but which work for both conventional Python scalars and NDarrays. They
also allow the user to pass additional arguments to control, for instance, error
handling.

NDarray extends Python’s concept of slicing to multiple dimensions, but with
one key difference: Unlike in Python, a slice of an NDarray object always refers to
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the same data as the original object. For instance, executing b = al[::2], means
that b contains the elements of a that occur at even indices. Since b refers to the
same data as a, changes made to the shared elements will affect both.

2.5.1 Shape, Strides, and Slicing. NumPy describes the contents of an NDarray
with a data pointer, a shape tuple, and a stride tuple. The shape of an array is its
size along each dimension and the strides of an array specify the number of bytes
between logically consecutive array elements (note that a stride is like a step, but
uses bytes instead of items). The shape and strides tuples both have one entry
for each dimension of the array.

For contiguous arrays, strides follow directly from shape and the element size.
For example, a 3-dimensional array of 32 bit (4 byte) floats, whose shape is (2, 3,4)
has 24 (2 x 3 x 4) elements. The strides tuple for such an array would be (48, 16,4).
(Recall that C uses row-major order.)

These properties are available to the Python programmer, but are primarily used
internally by NumPy. In keeping with the aforementioned semantics, when a slice
of an NDarray is created, a new NDarray is created which points to the data of the
riginal array but has its own shape and strides.

2.5.2 Broadcasting. An array’s strides tuple may contain zeros. If an array’s
strides[n] = 0, then data in dimensions below n will be repeated shape [n] times.
This leads to one of the key features of NumPy, broadcasting, which allows oper-
ations to be performed on arrays whose shape tuples are not identical. In order
for an binary operation two NDarrays to be valid, both of the operands need to be
broadcast-compatible with each other.

Broadcasting is, at most, a two-step process. The first step is necessary only if
the two arrays differ in their numbers of dimensions. In this case, the size of the
shape and strides tuples of the NDArray with fewer dimensions are extended until
they are the same length as the other NDarray. This is done by prepending 1’s to
the shape tuple and prepending 0’s to the strides tuple.

The second step is to compare the corresponding elements of the shape tuples.
Elements match if they are equal to eachother or if at least one of them is equal to 1.
The latter case is the origin of the term “broadcasting”: the values of the NDarray
with a 1 in one dimension of its (effective) shape will be broadcast to all elements
of the other NDarray. If the match is successful, the operation may proceed.

For the purposes of broadcasting, scalars are treated as an array with zero di-
mensions, which makes them broadcast-compatible with any array.

As an example, suppose we have two NDarrays: A and B. If A’s shape and strides
are (11,5,7) and (140, 28,4); and B’s shape and strides are (5,7) and (56, 8). The
first step would be to extend the size of B’s shape and strides tuples. They
would become (1,5,7) and (0,56,8). The next step would be to check that the
corresponding elements of A’s and B’s shape tuples match, and they do. Therefore,
A and B are broadcast-compatible. Conceptually, B’s single 527 array would be
repeated 11 times and combined with A’s 11 527 arrays. A more detailed discussion
of broadcasting can be found in [Oliphant 2006].
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4 from gpupy import *

17 x
18 vy

fromfunction(lambda x, y: x, (w, h), dtype=gpufloat32)

fromfunction(lambda x, y: y, (w, h), dtype=gpufloat32)

Fig. 2. Changes Required to Translate the NumPy Program in Appendix A to GpuPy. Only lines
requiring changes are shown and the changes are underlined.

2.6 Lazy Evaluation

Most programming languages evaluate expressions when they are assigned, or bound
to a variable. This is known as strict or eager evaluation. Instead of evaluating
expressions when they are bound, it is possible to defer evaluation until the value
is actually needed. This is known as lazy evaluation. The reasoning behind lazy
evaluation is that the contents of a variable are irrelevant until the contents are
actually needed. Two examples of programming languages that use lazy evaluation
are Haskell [Hudak et al. 2007] and Miranda [Turner 1986].

Instead of storing the result of an expression in a variable, lazy evaluation stores
the expression itself, which can eventually be evaluated to produce the desired
result. An expression may refer to other expressions. The result is a tree containing
operators and operands that is evaluated when the value of the variable is actually
needed. The benefits of lazy evaluation are avoiding unnecessary and redundant
calculations. As demonstrated by Tarditi et al. [2006]; there are additional benefits
when using a GPU which will be discussed in the following sections.

3. USING GPUPY

To motivate our discussion of GpuPy internals, we first provide a brief overview of
how it is used and its capabilities.

GpuPy is a Python extension module that interfaces with a GPU. It interacts
closely with NumPy and provides a very similar interface that is able to execute
many NumPy programs with minimal changes. GpuPy uses GPU versions of op-
erations whenever possible and delegates to NumPy when a GPU version of the
algorithm is not available. The primary goals of GpuPy are to allow a GPU to be
easily used from Python and to do so using an interface that is similar or identical
to an existing API (NumPy). Successfully meeting these goals provides a system
that can outperform CPU-only programs and requires little knowledge beyond that
needed to use NumPy.

Translating a NumPy program to use GpuPy is trivial: Import gpupy instead of
numpy and create array elements with type gpufloat32 instead of any of the (C)
types supported by NumPy.

Appendix A contains source code for a simple NumPy raytracing program that
renders a single shaded sphere. Only three lines, shown in Figure 2, need to be
changed to convert it to use GpuPy. Figure 3 shows the result (identical for both
versions). Note that, somewhat paradoxically, apart from the driver code shown in
Figure 1, we are not using any OpenGL primitives to do this: It is an analytically-
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Fig. 3. Image Rendered by the GpuPy version of the Shaded Sphere Program Shown in Ap-
pendix A. The NumPy version is identical.

defined, raytraced sphere, not a polyhedral approximation.

Some features of NumPy such as mutable arrays and advanced slicing [Oliphant
2007] are not yet supported by GpuPy. We expect to add them soon. In the
mean time, it should be possible in many cases to modify existing programs to
avoid these features. In the particular case of mutable arrays, treating GPU arrays
as immutable will always lead to programs that take better advantage of GPU
acceleration.

4. IMPLEMENTATION

We discuss here the internal implementation of GpuPy, which is written in C.
GpuPy is divided into two layers: the Core Layer and the Driver Layer. The Core
Layer is the part of the code that interfaces with Python and NumPy, and the
Driver Layer is an implementation of the GpuPy driver model that the Core Layer
uses to interface with the GPU. Figure 4 illustrates how the various components of
GpuPy interact with each other.

Technically, GpyPy implements a subset of NumPy functionality. It is important
to remember that a major goal of GpyPy is transparency: When the user requests
functionality that GpyPy does not (yet) support (perhaps because of GPU hardware
limitations) it will automatically route the request through NumPy without user
intervention. If the functionality is supported in a later GpyPy release, or if the
user upgrades their hardware to a GPU that supports it, the user’s code runs faster
but remains unchanged.

4.1 The GpuArray Class

The primary class implemented by GpuPy (in C) is GpuArray. Internally, GpuArrays
contain two pointers, one to an underlying NDarray and one to another GpuArray,
and a set of attributes.

Allocation of the pointed-at NDarray is on an as-needed basis. When the pointer
is NULL, the array’s data is either residing in the GPU or has not yet been evaluated.
When it is not NULL, the pointed-at NDarray contains the array’s data. In most
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Application

Python Interpreter
GpuPy

—»‘ Core ‘

driver driver

4—1—\

NumPy library ‘OpenGLIibrawH Cg library ‘

and extensions
GPU hardware

‘ OpenGL/Cg ‘ software

Fig. 4. Block Diagram of GpuPy, a Python extension module that implements (a subset of) the
NumPy API. Note that the Driver Layer insulates the rest of GpuPy from the API being used to
control the GPU.

cases, therefore, a GpuArray itself does not contain any data. The one exception to
this is an optimization that avoids allocating the NDarray when it would contain
only a scalar as part of an expression involving one or more actual arrays.

The GpuArray pointer is to a GpuArray called the data owner. When a GpuArray
is a slice, its data owner points to the GpuArray from which the slice was taken.
When a GpuArray is not a slice, the GpuArray’s data owner is itself. There is always
only one level of indirection: A slice of a slice points to the original unsliced array.

The main attributes in a GpuArray are

—an offset (index) into its data owner,

—its number of dimensions,

—its shape,

—its strides,

—its type, and

—an “evaluated” bitmap.

Because there are many possible ways in which a given data owner could be viewed
(i.e., sliced or reshaped), it is best to think of the attributes as describing a “view”

of a GpuArray, rather than the object itself.
A GpuArray can be one of three types:

—If the type is ARRAY, then all of the data is present and there is always an under-
lying NDarray present.

—If the type is CONSTANT, then there is never an underlying NDarray present and
the value of the constant is stored in the GpuArray.

—If the type is EXPRESSION, then there may or may not be an underlying NDarray
present. In this case, the GpuArray contains zero or more pointers to child
GpuArrays.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



GpuPy: Transparently and Efficiently Using a GPU for Numerical Computation in Python

For example, after the assignment a = b + c, a has the EXPRESSION type and b
and c are its children.

EXPRESSION GpuArrays can have part of their data evaluated and part of it
unevaluated: There is then a bit in the “evaluated” bitmap for each entry in
the array that determines whether the corresponding array element has been
evaluated.

4.2 Blocks

The size of the data being processed by GpuPy can be very large. This creates a
problem for the GPU because a view may not always fit entirely on the GPU. This
means that a GPU cannot necessarily process an entire array at once.

In order to handle views of arbitrary size, GpuPy divides each view into fixed-
size blocks. An additional attribute, the block number, is added to the view’s
description in order to describe a block.

The attributes that make up a block represent a single piece of a view, and more
importantly, the contents of a single GPU texture. Operations in GpuPy are always
performed on blocks. Before a shader is executed, the blocks upon which it depends
must reside on the GPU. Executing a shader produces a block that may be copied
back to the CPU.

A block number is similar to a page number in a virtual memory system [Tanen-
baum 1999] in that it represents a region of memory that may or may not be present
on the GPU at any given time. Each GpuArray can be thought of as a region of
virtual memory, some part of which is backed by blocks on the GPU.

4.3 Caching

GpuPy allocates one block for each texture allocated from the Driver Layer. It
uses these blocks to track the contents of the GPU and thereby avoid unnecessary
copies between the CPU and GPU.

The blocks are tracked in a hash table and a least-recently-used (LRU) list. The
hash table is used to quickly determine whether a block is already present on the
GPU, and the LRU list is used to choose an appropriate candidate for eviction from
the GPU if its memory becomes full. When executing a shader which depends on a
block that is not present on the GPU, the block must be copied to the GPU. This
is analogous to demand paging in virtual memory systems [Tanenbaum 1999]. If
GPU memory becomes exhausted, then GpuPy must evict a block from the GPU
in order to make room for the new block. We believe LRU to be a reasonable
algorithmic choice, but further research is called for. For example, it may be better
to aggressively allocate textures and simply rely on the GPU’s device driver to take
care of the details.

4.4 Lazy Evaluation

In order for GpuPy to perform calculations on a GPU, blocks must be copied to
the GPU and the result block must be copied back. Copying is expensive enough
that if only a single binary operation is performed on a GPU, it will typically be
slower than performing the same calculation on the CPU.

As previously suggested by Tarditi et al. [2006], GpuPy overcomes this limitation
by using lazy evaluation. Lazy evaluation can increase the overall performance of a
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1 from gpupy import *

2

3 a = arange(8, dtype=gpufloat32)

4 # a = array([O0, 1, 2, 3, 4, &5, 6, 7])
5

6 b = arange(8, 16, dtype=gpufloat32)
7 # b = array([8, 9, 10, 11, 12, 13, 14, 15])
8

9 ¢ = 3.5

10 el = cos(a)

11 e2 = b + ¢

12 e3 = el * e2

13

14 print e3

Fig. 5. A Simple GpuPy Program. This program was intentionally written with each operation
on its own line, which allows the expressions produced to be identified by the line number.

\ 12 \
‘ EXPRESSION (%) ‘
( 10 ‘ ( 11 ‘
‘ EXPRESSION(cos) ‘ ‘ EXPRESSION (+) ‘
3 6 [ 9
‘ ARRAY (a) ‘ ‘ ARRAY (b) ‘ L\ CONSTANT(3.5)

Fig. 6. Expression Tree Produced from the GpuPy code in Figure 5. The number contained in
each expression corresponds to the line number in Figure 5 that produced it.

GPU by allowing more operations per block copied, amortizing the cost of copying
data between the CPU and GPU. GpuPy implements lazy evaluation by providing
operators that, instead of calculating a result, build an appropriate expression that
can be evaluated at a later time.

Figure 5 shows an example GpuPy program. The expression tree produced by
this code is shown in Figure 6. When execution reaches line 14, the expression tree
will be evaluated so that the results may be printed.

In order for lazy evaluation to work, GpuPy needs to keep track of which array
elements have been evaluated. As mentioned before, all EXPRESSION GpuArrays
contain an bit in a bitmap on the host for each element in the array. This bit is
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cleared when the GpuArray is created (in the GPU) and set when a block containing
that element is evaluated and copied to the CPU. This is somewhat analogous to
the “dirty” bit used in a virtual memory system [Silberschatz et al. 2005]. As in
NumPy, slices in GpuPy refer to the same underlying data and therefore don’t
require any additional bits.

GpuPy does not allocate a GpuArray’s underlying NDarray until the first bit
needs to be set. When an element in an array is needed, GpuPy checks the bit
for that element to see if evaluation is necessary. If the bit is not set then the
block containing the requested element is evaluated and all of its corresponding
bits (including the original one) are set.

The need may arise for a number of reasons, but in general it is when the element’s
data needs to be in CPU memory. This can happen when the data needs to be
displayed for a user, when the data needs to be converted to another data type,
or when an operation that cannot be performed on a GPU (at least at the current
level of GpuPy’s development) is required.

Evaluating all of the blocks of a GpuArray is called flushing and is done when
a complete underlying NDarray is needed. This is necessary, for instance, when
the NDarray is going to be passed to some function not controlled by GpuPy that
expects an NDarray.

4.5 Expression Traversal

When a result is needed, an expression tree must be processed and the correct
result produced. Like other trees, a GpuPy expression tree can be processed by
performing a depth first traversal. A traversal of a GpuPy expression tree begins
with the requested block and recursively calculates its dependencies.

The attributes of the blocks encountered during traversal must be propagated to
their children. Because attributes propagate to children, the depth-first traversal
must perform additional steps each time it visits a GpuArray object. For example,
if a = b + ¢, and a block describing the even elements of a is requested, then the
blocks produced by the traversal should be the even elements of b and c. Figure 7
shows the dependent blocks calculation algorithm.

Keeping track of the GpuArray’s attributes is not difficult, as most of them remain
constant during traversal. The offset and strides can change from block to block
and therefore present more of a challenge. The proper offset and strides for a
block dependency are calculated by combining the parent’s view and the child’s
view as follows: The parent’s and child’s per-dimension offsets are added together
to produce the correct offset and the parent’s and child’s strides are multiplied
together to produce the correct strides for the child’s view. A traversal, then,
produces a topological ordering of the block dependencies of the requested block.

4.6 The Driver Layer

In order to provide a more extensible system, GpuPy implements a Driver Layer
that abstracts the GPU capabilities needed by the Core Layer. Most importantly,
this allows drivers for different GPU architectures to be easily implemented and
tested. It also allows the Core Layer to be indifferent to the precise method used
for programming the GPU.

The Driver Layer requires 14 essential functions that each driver implementation
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# Calculate the dependent block

def BuildView (block, child):
# create a new block that references
# the child exzpression
child_block = block(child)

# the array, number of dimensions, shape,

# and block number stay the same
child_block .nd = block.nd

child_block .shape = block.shape

child_block .block_number = block.block_number

# calculate new strides and offset
child_block .offset = child.offset
for i in range(block.nd):
child_block.strides [i] =
block.strides [i] * child.strides [i]
child_block .offset +=
block.array.offsets [i] * child.strides [i]

return child_block

Fig. 7. The BuildView Algorithm. This algorithm constructs a dependent block by combining the
attributes of the parent block and the child expression.

must provide. In addition to these functions, a driver also provides functions for
any of the NumPy functionality that it knows how to reproduce. These additional
functions depend on the model of GPU being used and are chosen from the set of
all methods known to NumPy.

4.6.1 Infrastructure. Infrastructure driver functions are the most basic func-
tions that a driver must provide. They are responsible for initialization, cleanup,
and describing driver capabilities to the Core Layer.

—init:

Allocates memory, initializes required APIs (e.g., OpenGL), and returns an

opaque pointer to the driver’s private data structure. The private data structure

is provided to all remaining Driver Layer functions. If this function succeeds,
then the remaining Driver Layer functions are ready to be called. If this func-
tion fails, then the driver could not be initialized and GpuPy will not be able to
perform any calculations.

—cleanup():

Reverses any actions performed by the init () function. This function is not cur-

rently used by GpuPy, but is included for completeness and the future possibility

of dynamically changing drivers. This function must not fail.

4.6.2  Block-Related. Block-related functions allow the Core Layer to allocate,
free, and control the contents of GPU textures.

—block_t *block_alloc(int type):
Allocates and a GPU texture and returns a pointer to it. If there are no more
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textures available, NULL is returned and the Core Layer knows that it must free
a GPU texture before it can allocate more. The type argument specifies what
type of block to allocate. GpuPy currently only supports a single block type
(gpufloat32), but will probably be expanded to support others.

—void block_free(block_t *block):
Frees a GPU texture allocated by a call to block_alloc().

—int block_read(block_t *block, float *buf):
Copies the contents of a block from the Driver Layer to the CPU. The block
parameter specifies the block to read and buf is the location to which to copy
the data. This function returns 0 on success and a negative value on failure.

—int block_write(block_t *block, float *buf):
Copies the contents of a buffer provided by the Core Layer into the specified
block. The block parameter specifies the block to write and buf is the location
from which to copy the data. This function returns 0 on success and < 0 on
failure.

We will discuss these in greater detail in Section 4.7.

4.6.3 FEwvaluation

—block._t *evaluate_expr(PyGpuArrayObject *gpa, int bnumber):
Evaluates block bnumber for the expression contained in gpa and returns the
block_t that contains the result, or NULL if the expression can not be evaluated.

4.6.4  Function-related. Functionality-related functions describe the capabilities
of the current driver.

— callback t get_method(int opcode):
Returns a pointer to the function that implements the requested operation. The
opcode parameter specifies the requested operation. This is how driver-specific
support is implemented. If a driver does not support the requested function, it
returns NULL and the Core Layer will know that it must fall back to the NumPy
version.

All remaining driver functions provide driver-specific implementations of NumPy
functionality such as add (), subtract (), sin(), and exp (). These functions return
a GpuArray representing the appropriate expression tree.

4.7 Partitioning

As mentioned in the Section 2, GPUs place strict limits on the resource usage of
shaders. This means that a GpuPy expression may not be able to be evaluated with
a single shader. GpuPy must therefore partition its expressions into subexpressions
that can be evaluated separately and combined to produce the correct result. In
order to partition an expression, GpuPy must select which blocks to evaluate. Once
a block has been evaluated, it can be used as an operand in the next shader,
allowing an arbitrary expression to be broken up into a sequence of valid shaders.
Partitioning is currently handled by the driver layer.
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4.8 The OpenGL/Cg Driver

GpuPy’s primary driver uses OpenGL and NVIDIA’s Cg library [Woo et al. 1999;
CgS 2008] to send shader information to the GPU. It implements the most com-
monly used NumPy operations.

The Cg driver works in three stages. During the first stage, a depth-first traversal
of the expression tree is performed and stored in a linked list. The traversal always
expands larger sub-trees first, so that when code is generated, temporary values
will be used as soon as possible rather than consuming a temporary register. The
linked list produced here is processed by the remaining two stages to evaluate the
expression.

The second stage is the most complex of the three. It must walk through the
list generated in the first stage and generate shader code that can be run on the
GPU. The complex part of this process is that due to resource constraints placed on
shaders, the operations stored in the linked list may not all fit into a single shader.
Below is a list ways in which a shader is limited.

—total instructions: The total number of instructions needed by the shader.
—ALU instructions: The number of ALU instructions needed by the shader. ALU
instructions perform arithmetic operations such as addition and subtraction.
—texture instructions: Texture instructions are used to read values from a texture.
—texture indirections: Texture indirections occur when a value read from a texture
is used as an argument to a subsequent read from a texture. GpuPy does not

currently use texture indirections, but will in the future.

—temporary registers: The number of registers needed to execute the shader. This
depends on the structure of the program and the number of common subexpres-
sions.

—parameters: Parameters are used to pass constant values to shaders. GpuPy
uses parameters to represent constants that appear in expression trees and to
pass extra required information to the shader.

—attributes: Attributes are things like texture coordinates and other OpenGL state
information.

The second stage iterates over the list and divides it into a series of sub-lists
that fit into a single shader. Shaders can only write a limited number of outputs,
the boundaries between sub-lists must occur when the number of temporary values
is less than or equal to this limit (1 in the current version of GpuPy). During
iteration, the second stage always remembers the most recent place in the list where
this condition is met. This is the most recent safe place at which the list may be
divided. At each step, the resource usage is calculated and if this is greater than
the capabilities of the GPU, then the list is divided at the last waypoint and the
algorithm begins again at the node following the last safe waypoint. Each sub-list
produced in stage two is passed to stage three where it is evaluated on the GPU. If
stage three fails, then stage two will back up to the next-to-last waypoint and try
stage three again. This process repeats until stage three is successful or the front
of the list is reached, in which case the algorithm fails.

Stage three is relatively simple: given a sub-list, emit shader code and evaluate
this code into a newly allocated GpuArray. If this process fails, then stage two
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operation | source Pso Prs Py7 Pog Pyg Pioo

add NumPy | 0.00 0.00 5.00e-1 | 5.00e-1 | 5.00e-1 | 5.00e-1
GpuPy 0.00 0.00 5.00e-1 | 5.00e-1 | 5.00e-1 | 5.00e-1

subtract NumPy | 0.00 0.00 5.00e-1 | 5.00e-1 | 5.00e-1 | 5.00e-1
GpuPy 0.00 0.00 5.00e-1 | 5.00e-1 | 5.00e-1 | 5.00e-1

multiply NumPy | 2.43e-1 | 3.71le-1 | 4.88e-1 | 4.94e-1 | 4.99e-1 | 5.00e-1
GpuPy 2.43e-1 | 3.71le-1 | 4.88e-1 | 4.94e-1 | 4.99¢-1 | 5.00e-1
divide NumPy | 2.50e-1 | 3.67e-1 | 4.91e-1 | 4.99e-1 | 5.00e-1 | 5.00e-1
GpuPy 3.13e-1 | 5.42e-1 | 9.58e-1 | 1.00 1.11 1.50

Table I. The error in ULPs for basic operations for NumPy and GpuPy. Py is the N'" percentile.

adjusts the sub-list and tries again. The code generation in stage three is very
simple and does not perform any optimizations. After it produces the code, it
compiles and evaluates the code using Cg library functions.

4.9 Software Driver

GpuPy also contains a software driver that doesn’t use a GPU at all. It implements
some basic operations but is mostly used for testing. Most of the software driver’s
functions perform no work and return default values. It allows only a single oper-
ation to be performed per evaluation. This is useful for testing the Core Layer’s
algorithms because advanced behaviors such as partitioning and block eviction can
be triggered using small, easy to understand programs. Unlike the Cg driver, the
software driver has no external dependencies, and therefore allows GpuPy’s basic
functionality to be tested on systems where no GPU is present.

5. EVALUATION

We evaluate both the quality and the performance of GpuPy’s calculations. Quality
is measured by how close GpuPy is to the arbitrary-precision result, and perfor-
mance is measured by running a test program under both GpuPy and NumPy.

5.1 Quality

One way to measure error in floating point numbers is Units in the Last Place
(ULPs). For a given floating point number, the ULP is the quantity represented
by the least significant digit of the floating point number. This quantity depends
on the exponent and the number of digits of precision. Consider the floating point
value 2.71828 x 103. For this number, the base B = 10, the precision p = 6, and the
exponent e = 3. The ULP in this case is 0.00001, or BP~¢*!. In general, a floating
point number can represent any real number in its range to within 0.5 ULPs. For
a detailed discussion of floating point numbers, see [Goldberg 1991].

For each operation tested we measure the error of the GpuPy result and the error
of the NumPy result. A large number of trials are run over a range of input values
and the statistics are collected. The percentiles for the error are calculated because
they illustrate the general behavior of GPU arithmetic. The fact that the highest
percentiles are much larger than the lower ones indicates that the worst errors are
outliers and occur for only a limited number of inputs. The first group of functions
evaluated is the basic arithmetical operations: add, subtract, multiply and divide.
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operation | source Pso Prs Py7 Pog Pyg Pioo
arccos NumPy | 2.04e-1 | 3.38e-1 | 4.65e-1 | 4.78e-1 | 4.90e-1 | 4.95e-1
GpuPy 2.07e2 4.04e2 5.47e2 5.61e2 5.67e2 7.05e2
arcsin NumPy | 2.4le-1 | 3.59e-1 | 4.85e-1 | 4.89e-1 | 4.94e-1 | 4.98e-1
GpuPy 5.63e2 1.65e3 9.09e3 1.25e4 1.25e4 9.30e6
arctan NumPy | 2.34e-1 | 3.17e-1 | 4.78e-1 | 4.86e-1 | 4.86e-1 | 4.89e-1
GpuPy 3.44el 4.63el 6.69¢el 6.72el 6.83el 7.22el
cos NumPy | 2.48e-1 | 3.75e-1 | 4.86e-1 | 4.91e-1 | 4.95e-1 | 5.00e-1
GpuPy 2.06 5.55 5.57el 8.02¢l 1.58¢2 1.42e4
cosh NumPy | 2.43e-1 | 3.89e-1 | 4.86e-1 | 4.87e-1 | 4.98e-1 | 4.98e-1
GpuPy 7.98¢-1 | 1.16 1.94 2.02 2.10 2.24
exp NumPy | 2.18e-1 | 3.43e-1 | 4.82e-1 | 4.83e-1 | 4.87e-1 | 4.89e-1
GpuPy 1.09 1.45 2.32 2.42 2.65 2.75
fmod NumPy | 0.00 0.00 0.00 0.00 0.00 0.00
GpuPy 1.00 2.00 1.89e5 3.15e5 1.05e6 1.61e7
log NumPy | 2.38e-1 | 3.74e-1 | 4.67e-1 | 4.77e-1 | 4.92e-1 | 4.96e-1
GpuPy 5.52e-1 | 8.88e-1 | 1.53 1.68 2.09 4.30
logl0 NumPy | 2.59e-1 | 3.79e-1 | 4.78e-1 | 4.82e-1 | 4.96e-1 | 4.97e-1
GpuPy 3.22e-1 | 5.55e-1 | 1.04 1.16 1.34 4.39
power NumPy | 2.40e-1 | 3.7le-1 | 4.83e-1 | 4.87e-1 | 4.93e-1 | 5.00e-1
GpuPy 3.68 7.55 1.88el 2.06el 2.35¢l 3.47¢el
sin NumPy | 2.34e-1 | 3.78e-1 | 4.69e-1 | 4.83e-1 | 4.87e-1 | 4.96e-1
GpuPy 1.68 4.99 3.42¢l 3.54el 8.00el 7.86€6
sinh NumPy | 3.37e-1 | 5.94e-1 | 9.83e-1 | 1.15 1.18 1.20
GpuPy 1.73 2.47 7.58 1.50el 2.62¢l 6.70el
sqrt NumPy | 2.16e-1 | 3.74e-1 | 4.79e-1 | 4.82e-1 | 4.90e-1 | 4.92e-1
GpuPy 3.29¢-1 | 5.38e-1 | 1.00 1.00 1.00 1.32
tan NumPy | 2.37e-1 | 3.67e-1 | 4.82e-1 | 4.86e-1 | 4.88e-1 | 4.96e-1
GpuPy 7.27 1.71el 7.67el 2.05e2 8.39¢6 1.68e7
tanh NumPy | 1.8le-1 | 3.41e-1 | 4.66e-1 | 4.73e-1 | 4.85e-1 | 4.95e-1
GpuPy 1.53 2.24 1.10el 1.69el 1.86el 2.0lel

Table II.  The error in ULPs for functions for NumPy and GpuPy. Py is the Nt* percentile.

Table I shows that NumPy’s single-precision floating point values are always
within 0.5 ULP of the actual value. This can be viewed as evidence that the basic
operations are performed faithfully by NumPy. This level of precision is expected of
most (if not all) modern CPUs that support floating point calculations. In general,
the same cannot be said for GPUs. GpuPy’s floating point values are all within
0.5 ULP for addition, subtraction, and multiplication, but some are greater than
0.5 ULPs for divide. This means that calculations performed by the GPU do not
necessarily produce the floating point value closest to the actual value. The divide
operation’s greater error can be explained by the fact that division is implemented
using recipricol and multiply. Although not as precise as the values calculated using
NumPy, GpuPy does a reasonably good job.

The next group are functions that are implemented by NumPy and GpuPy. These
functions are arcsin, arccos, arctan, cos, cosh, sin, sinh, tan, and tanh.

Table II shows that NumPy, as expected, produces good results. With the ex-
ception of sinh, all functions are within 0.5 ULP of the actual value. GpuPy clearly
does not perform as well as NumPy for these functions. This is because the full 24
bits of precision offered by single-precision numbers is simply not needed for most
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graphics applications. Another contributing factor is that only some of the opera-
tions in Table IT are implemented in hardware and the remainder are composed of
those.

Several other operations are implemented by GpuPy, but they are uninteresting
because the result is derived directly from the input without performing any real
calculations. The uninteresting operations are: absolute, ceil, equal, fabs, floor,
greater, greater_equal, less, less_equal, maximum, minimum, and not_equal. For all
of these operations, NumPy and GpuPy produce the same results with zero error.

5.2 Performance

To test performance, we run the same program on both NumPy and GpuPy and
compare the results. The test program generates a grayscale image produced by
calculating the minumum distances between each pixel and a given set of points.
More formally, given a set S of randomly chosen points and an M x M grid of
pixels. For each grid point p, calculate:

d(p) = min |p — q|.
(p) I;lelglp ql

Intuitively, the projection of the “ridges” of d() onto the image plane is the Voronoi
diagram [de Berg et al. 2000] of S.

This algorithm is an especially useful one for testing GpuPy, as we can scale
the size of the image to adapt to GPUs with larger or smaller amounts of texture
memory and we can scale the size of S to increase the depth of the expression tree
to exercise lazy evaluation. To display the results, we linearly map them so that the
minimum value of d() corresponds to 0 and the maximum value of d() corresponds
to 1. Figure 8 shows an image produced by the distance map test.

We ran the distance map program in GpuPy and NumPy. A helper script runs
the two versions and compares their performance and results. Each version is run
several times, with increasing sizes of S.

Figure 9 compares the running trials of a Python program that implements the
distance map algorithm. Each trial involves running the program a number of
times with an increasing number of points. Two trials were run in NumPy mode
on different CPUs and two trials were run in GpuPy mode on different GPUs.

6. CONCLUSIONS

GpuPy shows a significant performance improvement over NumPy and C versions
of the test application. GpuPy outperforms NumPy and C by around a factor
of 10 for some tests. The lazy evaluation and tree partitioning algorithms work
well enough to allow a GPU to be used efficiently without requiring any direct
programming of the GPU. In addition, GpuPy supports arrays larger than can fit
on the GPU.

GpuPy may allow many existing NumPy programs to be run using a GPU making
only trivial changes. This provides an easy way to use a GPU for general purpose
calculations. GpuPy’s design makes it easy to iteratively add support for new GPUs
or other parallel computing architectures and provides almost seamless integration
with NumPy.
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Fig. 8. Distance Map Image. This was generated using a set S of 5000 randomly chosen points
on a 512 x 512 grid. Each pixel’s intensity is set according to the distance from it to the nearest
point in S.

7. FUTURE WORK

There are many options for future work on GpuPy. Some possibilities are listed
and discussed below.

—Better NumPy support: The eventual goal of GpuPy is to be a drop-in replace-
ment for NumPy. There are a large number of features that need to be added
before this can happen. Reductions, sorting, mutable arrays, and advanced slic-
ing are all examples of features the current implementation lacks. Support for
NumPy extensions like Linear Algebra, MLab (MATLAB™ compatibility), and
MA (masked arrays) may also benefit from GPU acceleration.

—Improved mapping to GPU: Using fixed-size blocks is less than ideal. It requires
that all arrays be rounded up to the next multiple of the block size, even if
the array is small and the block size is large. Removing this limitation would
allow GpuPy to scale better, especially for arrays whose size is less than one
block. Going further than this, having a more advanced block scheme could
allow features such as broadcasting and striding to be moved entirely onto the
GPU, which would improve performance.
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—Vector data types: GpuPy currently allows elements of an array to be only
scalars, but GPUs also have native representations of 2-, 3-, and 4-vectors of
floating point values. Certain algorithms, such as those used for geometry and
image-processing, are more easily described using vectors rather than scalars.
The sphere rendering done in Section 3, for example, would benefit from vector
data types.

—Shader caching: Performance can be improved by implementing a shader-caching
algorithm such as the one described in Accelerator [Tarditi et al. 2006]. Each
view could have associated with it a shader that evaluates to it. This would
be especially useful when all of the blocks of an expression are being evaluated,
since different blocks from the same expression have identical shader code, but
different blocks. When a cache hit occurred, the cost of partitioning and building
the code would be eliminated.

—Python’s compiler package: Using Python’s compiler package to build expres-
sion trees may have advantages over the interpretive technique. It would allow
GpuPy to have more complete information and it would not have to guess about
things like which array elements would be requested. This would allow GpuPy
to more efficiently perform calculations since unneeded elements would never be
evaluated. GPUs can also perform conditional branching, which could be taken
advantage of using the compiler package.
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Fig. 9. Distance Map Performance Comparison. This plot compares the performance of GpuPy
and NumPy on two different systems.
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—DMultiple render buffers: Newer GPUs have the ability to write to multiple render
buffers from a single shader. Taking advantage of this feature could allow GpuPy
to evaluate a tree more efficiently because it would not be limited to a single
sub-expression. It could work on up to N sub-expressions at a time, where N
is the number of render buffers allowed by the underlying hardware. Currently,
shaders that do not exhaust single-shader resources may need to be run because
the entire sub-expression does not fit. Allowing multiple write buffers would
remove the requirement that an entire subexpression be evaluated at once and
allow multiple partial subexpressions to be evaluated together.

—DMore drivers: GpuPy drivers should be written to take advantage of the different
alternatives to Cg. Examples are ATI’s DPVM API [Peercy et al. 2006] and
NVIDIA’s CUDA [CUD 2008]. Drivers could also potentially be written that use
something other than a GPU to perform calculations. An Ethernet-connected
GPU cluster was described in [Fan et al. 2004]. The GPU cluster outperformed
CPU-based solutions for a flow simulation.
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APPENDIX
A. SHADED SPHERE SOURCE CODE

import sys
from PIL import Image

from numpy import *

# parameter settings

(w,h) = (512, 512) # image dimensions

r = 0.4 * min(w, h) # sphere radius

(vx, vy, vz) = (w/2, h/2, w) # viewer position

(1x, ly, 1z) = (-1, 1, 1) # light direction

bg = (0.0, 0.0, 0.5) # background color

ka = (0.1, 0.2, 0.3) # ambient sphere color
kd = (0.2, 0.5, 0.6) # diffuse sphere color
(cx, cy, cz) = (w/2, h/2, 0) # sphere position

# Start with pizel coordinates.

x = fromfunction(lambda x, y: x, (w, h), dtype=float32)
y

z

fromfunction(lambda x, y: y, (w, h), dtype=float32)

= 0 # on the image plane

(dx, dy, dz) = (x - vx, y - vy, z - vz) # viewing direction
# Solve the quadratic equation for each pizel
# (note: no ezplicit iteration)
a = dx**2 + dy**2 + dz*x*2
b = 2*xdx*(vx-cx) + 2xdy*(vy-cy) + 2xdzx(vz-cz)
C = CxX**2 + Ccy**2 + cz**2 + vx**x2 + vyx*x2 + vz*x*x2 \
- 2 % (cx*Vx + Ccy*vy + cz*vz) - T*%*2
disc = b*b - 4*xa*xc # discriminant

t = (-b - sqrt(disc)) / (2 *x a) # the ray parameter

# intersection
(ix, iy, iz) = (vx + txdx, vy + txdy, vz + tx*dz)

# mnormal to sphere at intersection
# (this is guaranteed to be of unit length)
(nx, ny, nz) = ((ix-cx)/r, (iy-cy)/r, (iz-cz)/r)

# dot product of sphere mormal and light normal

# (for diffuse shading)
nDotL = nx*1lx + ny*xly + nzx*xlz
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# Where the ray hits the sphere, set to the shaded

# diffuse color, otherwise set to black.

channels = [ 255 * where(disc > O,
where (nDotL > 0, ka_i + nDotL * kd_i, ka_i),
bg_i) for (bg_i, ka_i, kd_i) in zip(bg, ka, kd) ]

# Convert the array to an image and write it as a PNG file.
imgs = [ Image.frombuffer(
"F", (w, h), ¢, "raw", "F", 0, 1).convert("L")
for ¢ in channels ]
Image .merge ("RGB", imgs).save("shaded_sphere.png")
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