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Introduction Shape Analysis

We assume a polygon (a part of which is shown here in red) samples a smooth curve.
Every three points along it define a circle. We compute this circle's radius. The reciprocal
of that radius is by definition the (sampled) curvature at the midpoint. If the points "turn
left", the curvature is positive (the circle shown in yellow). If they "turn right"; it is negative
(the circle 1s shown in orange). If the points are collinear, the curvature is zero.

We are developing a software tool that can automatically
classify anthropogenic and natural aerosol particulates using
morphological analysis. Our method was developed using
background and secondary scanning electron microscope
(SEM) images of single particles. Particle silhouettes are
detected and converted into polygons using Intel’s OpenCV
computer vision library. Our analysis then proceeds
independently for the two kinds of images.

A particle’s contour is polygonized using the
Teh-Chin method provided by the Intel OpenCV
computer vision library. As shown here, the
polygon is overlaid on the particle. By traversing

S eg me ntatl on the polygon, we can calculate the signed curvature

value at each vertex using two adjacent vertices.

Classification

By integrating discrete overlapping bands of a particle’s power spectrum we can reduce its

Using a global threshold to segment the particles in monochromatic SEM images can isolate
internal areas of a particle usetul for textural analysis. Standard edge detectors can fail to

disambiguate internal texture features from particle holes if not parameterized correctly. Curvature along Particle Contour . . o
I—Ioweve%, user parameterization can be troublesome for automatli’ed analysis. Therefore}j we 14 ’ sﬂhouette e e EE Thesfe SEEOE can identity dlStlI.]Ct shaPe feature; By
have developed a segmentation technique that combines an adaptive threshold algorithm 12 | | | using the fit parameters from the variogram analysis, we can quantity distinct material
with an edge detector filter to separate a particle from a noisy background. e 08 Given a set of discrete, but non-unitormly spaced, differences among particles.
§ o4 samples of curvature as a function of distance along the particle's silhoutte, we wish to
3 %21 examine K(v ), the Fourier tr'ansfon'n of the curvature in terms of spatial frequency v. The combination of both shape and variogram fit parameters forms the basis of a
Histogram of Pixel Intensities =~ Many SEM images have bimodal pixel intensity o U4 Because that transtorm requires uniformly-spaced samples, however, we must resample the multidimensional classification space whose dimensionality we may reduce by principal
s distributions, as shown here. The first peak in the 00 2000 4000 000 —Perticea data, so we interpolate the data with cubic B-splines which we then sample uniformly (at a component analysis and whose region boundaries allow us to classify new particles on both
oo lower pixel intensity range can accurately describe Distance along Contour S power-of-two resolution) and pass to a standard Fast Fourier transtorm (FI'T) routine. shape and texture. This classification analysis is performed without a priori knowledge of

Local Minimum = background pixel intensities. Signal is often defined by

Threshold the second peak at higher pixel intensity ranges. The other physical, chemical, or climatic properties.

Background

= minimum point between these two distributions can
& make for a suitable threshold and can be found with no Power Spectrum of Curvature Data
- Y USCE parametenizgtion. . The power spectrum, K(v ), of k(S) qualitatively shows both shape and
o _ > 0008 4 roughness: more power at low frequencies indicates variation in shape;
: £ 0006 more power at higher frequencies indicates a rougher silhouette. By S umma ry
S g EEE; defining filters (low-, band-, and high-pass) over various frequency ranges We h d | d i |
d o + Particle A + Particle B to convolve with k(S) we can yield a set of parameters that numerically € have developed a technique to automatically segment
e characterize the shape and roughness. particles from both secondary and backscatter SEM images. The
- The adaptive threshold technique outperforms the resulting sub—image used for both textural and sha pe analysis.
7 global threshold approach. Unfortunately, some areas : :
in the particle still fall below the discovered cutoft \(/)Ve 2tz e}:(péormlg ways 1o pzrametTrlze bOthbThape and texture.
threshold. Here we see internal areas of the particle - ur methods allow us to reduce a larae problem space to a
. that are clipped by the adaptive threshold ap[[))roach. Te)(tu re Ana IySIS : : S : P o P
- smaller one without user parameterization. This is useful for
Raw

o~ P Analysis of backscatter images focuses on the (visual) texture, which is the result of both composition and geometry. Using the J i« of | " f SEM dlla
Trectold Threshold silhouette as a boundary, we compute the variogram, a statistical measure of inter-pixel covariance as a tunction of distance. automated analysis ot large quantities O particle images.

Variograms take on characteristic curves, which we fit with a heuristic, asymptotic function that uses a small set of parameters. Furthermore, we can encompass multi-particulate images

The adaptive threshold is then combined with gradient
values calculated using the Sobel edge detector filter.
We examine raw pixel values, shown in blue, at a single
scanline shown as a red line on the SEM images.
Internal areas of the particle fall dangerously close to
the discovered threshold, shown in yellow, making it
hard to disambiguate internal parts of a particle from
holes. However, gradient values, shown in pink, define

through modifications in our segmentation algorithm.

A particle's internal composition affects the visual texture of its backscatter
SEM (BSEM) image. The samples shown here demonstrate the variation of
texture. To quantify this variation, we first compute that image's variogram, a
statistical procedure which measures pixel-pixel covariance as a function of
distance between pairs of pixels. Each red dot represents a distinct inter-pixel

. distance.
the external edges of the particle, marked by A and B.
. 2 2 4 As seen here, variograms tend to be smooth tunctions and distinct for :
different materials. This suggests a second step: dimension reduction. Fitting \gf/
A the variogram with a set of N parameters (N = 4 in this case) allows us to WASHINGTON STATE
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represent the texture as a point in N-space.
By combining the threshold and gradient information,
we can distinguish internal texture features from
background. This leads to an improved result shown
by the segmented particle.
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