
Curriculorum: A Computer Science Approach
to Curriculum Management

Robert R. Lewis
School of Electrical Engineering and Computer Science

Washington State University 1

Abstract

Having been assigned part-time to an administrative position (concurrently with
normal academic duties) in charge of curriculum management, the author has developed
curriculorum, a system to assist in that task that was, is, and will continue to be
developed by and for a computer scientist. We describe the design of the system and how
it has evolved to meet requirements that were only dimly perceived when the project
started. As such, the project has been a gratifying exercise in the development of its
designer's skills in data management, in software engineering, and in Python, its
implementation language. We provide guidelines for the reader embarking on a similar
project.

1. Introduction

In 2005, the author was appointed Academic Program Coordinator for Computer
Science at his campus. This position is something like a local Chair: he is responsible for
managing the program on campus, but since the School is distributed across two
campuses, he reports academically to a Director on the main campus.

One of the major responsibilities of the job is overseeing course delivery:
scheduling class sessions, hiring and assigning instructors, arranging classrooms and
times, and evaluating instructor performance, all on an ongoing basis. As we will show
below, this presented a non-trivial data management problem.

There are existing commercial products to address this problem, but they are
irrelevant. Insofar as we surveyed them, they have two traits in common: a GUI front
end (usually web-based) and a database (usually relational) back end. Neither of these
was particularly relevant here for the following reason: The author is a computer
scientist. Dealing with data is not only something he is capable of doing, it is something
he enjoys.

The best way to solve the curriculum management (or, indeed, any similar)
problem is to make devising the solution fun. The definition of “fun” here was
guaranteed to be different from that found (if any) in using a commercial software
product: Commercial software generally hides its architecture from the end user. In this
case, the end user wants not only to see the architecture, but to design and modify it. As
understanding of the problem evolves, the architecture can be changed and because there
is a customer base of one, such problems as backward compatibility and maintaining
multiple versions don't apply.

Our goal here is not so much to describe curriculorum (Latin for “about

 1 contact information: 2710 University Dr.; Richland, WA; 99354; bobl@tricity.wsu.edu

courses”), the curriculum management system we have built, but to inspire the reader,
who is presumably a computer scientist, to use their skills to approach similar problems
in their own careers.

2. Requirements

As with any software engineering project, it was important to understand the
requirements that the system was expected to fulfill. These evolved over time, so we will
represent the phases that the requirements went through.

2.1. The Traditional Requirements

Maintaining a course database is a typical “Database 101” assignment or in-class
example. What follows is a typical statement of the problem. To show the first step of an
object-oriented analysis, we will indicate likely class names capitalized with a bold font
notation:

Represent the assignment of Instructors and Students to Classes. An
Instructor has a name and belongs to a Department. A Student has a name
and a student number. A Class has a name, a number, and belongs to a
Department.

This is only the start, of course. Had the project been this easy, it could all have
been done with ASCII files or a simple UNIX “db(3)”-style database. To be useful, it
needed more.

2.2. Non­Requirements

To do away with preconceived notions, it was beneficial to review traditional
requirements for systems like this that were not called for. There were two. The first was
that there did not need to be a graphical user interface (GUI) for data entry. The end user
was perfectly willing to enter information with a text editor into a collection of one or
more files.

The second non-requirement was that there was no need to interface with a
database system of any kind. Although our university has an extensive database (several,
it turns out) to keep registration and related information, we had at best read-only access
to it. Nor would it have been helpful in doing things like planning future course
offerings: It has no requirement to serve all our needs.

2.3. Reports

It is important to understand the deliverables of any project. Since this project
was designed primarily for its author's use, the main deliverable was defined to be a
comprehensive printed report called a “Course Plan”. This would incorporate all data
being maintained in the system and would include lists of: all undergraduate and graduate
CS courses, courses required by each degree, instructors, and complete schedules past,
present, and planned. Each of these should be in tabular form and include all relevant
attributes.

In addition to the Course Plan, each semester additional organizations within the
university require information drawn from the same data. These include the bookstore

(which needs a list of courses, instructors, and contact information), payroll (which needs
a list of adjunct instructors (only), and payments to be made), the campus webmaster
(who needs a 2-year projection of course offerings), and the registrar (who needs a list of
courses, instructors, and times for the current semester).

In addition, the information contained within the database is of interest to the
Accreditation Board for Engineering and Technology (ABET) [AB08], which reviews
our School every seven years. An adaptation of the Course Plan to include a seven-year
retrospective would be very welcome by the reviewing committee.

A guiding principle in making the system generate all of these reports was “DRY”
(Don't Repeat Yourself). Each distinct object, attribute, or relation should be entered in
one and only one place. This reduces the chance of inconsistency.

2.4. Checking

The system should provide some kind of checking of the input. For example, all
class names should be unique. The validity of some kinds of data may depend on how it
is being used. For instance, when generating a planning report it should be acceptable for
an instructor not to have been assigned, but when generating a report on a term that has
just been completed, an unassigned instructor should not be acceptable.

2.5. Unexpected Requirements

So far, the requirements we've discussed are those that might be encountered in
any department. As we proceeded, however, we encountered additional facts about the
way things were done that the approach given in Section 2.1 did not cover. We list some
of them here, using the same bold-face class convention for classes as there:

● The same class (which we will henceforth call a Course2) is often taught from
year-to-year. We refer to a Session -- an offering in the schedule for any
particular term -- as a sort of “instantiation” (in an object-oriented sense) of a
Course.

● A Session usually has one Instructor, but may be team-taught.

● Most Courses are taught at the home Institution (Washington State, in our case),
which is on the semester system, but we also need to show prerequisite Courses
from collaborating community colleges, which are on the quarter system.

● A Session is usually taught and attended at our Campus (Tri-Cities, in our case)
but may be taught (via closed-circuit TV) from another Campus and attended by
our students, and vice versa.

● An Instructor may be an adjunct, who therefore receives reimbursement on a
per-Session basis. (curriculorum does not need to manage non-adjunct pay.)

● A Session may be conjoint: it instantiates multiple Courses offered in the same
Timeslot to both undergraduate and graduate students.

● A Course may be co-listed: available for credit in more than one Department

2 This avoids the confusion between a “class” in an educational sense and a “class” in an object­oriented
programming sense.

under different course numbers.

● Special topics Courses all have the same course number. Their content may vary
from Session to Session, or it may be repeated in distinct Semesters.

This list is by no means complete for our campus, much less any other. Its purpose in
this discussion is to point out that when implementing a curriculorum-like system at
another university, another list of unexpected requirements is sure to come up.

2.5. Evolving Requirements and Data Availability

Again, unlike the example cited in Section 2.1, curriculorum needs to keep
records from year-to-year for retrospective analysis (such as the ABET report) as well as
future projections. When there is a change to the schema (e.g. adding a new
classification scheme for graduate courses) or to the data (e.g. adding attendance figures
that weren't there before or instructor ratings that only become available at the end of
class), it may be necessary to retroactively edit (“refactor” in a software engineering
sense) old entries. This is where a traditional table-based GUI+OODB approach
becomes hard to manage.

Owing to the dynamic nature of the data, it is necessary that the design allow for
“holes,” such as “to be determined” entries for instructors and timeslots. The system
should check these at the appropriate time, so that, for example, a Section with an
unassigned adjunct Instructor can be flagged at the time that the adjunct payroll report is
being generated.

3. Implementation

Once the initial requirements were understood, it became clear that an object-
oriented design was called for. We chose to use an object-oriented language (rather than
an OODBMS) to prototype the ideas, and the one we were most familiar with was Python
[PY08]. There turned out to be so many features in the language that helped the
prototyping (e.g. defaultable keyword arguments) that it became clear that Python would
do very well as the actual implementation language. There was an admitted bias here: It
would probably be equally convenient to implement curriculorum in a language like
Java, PHP, Ruby, Perl, or any similar, modern object-oriented language.

There may well be OODBMSs that could do the same job, but loading the Python
modules never takes more than a couple of seconds and there's only one user, so
persistent, shareable data storage was not required. In addition, none of the OODBMSs
we examined made refactoring as easy as the using the language. And since everything is
done in ASCII files, we can use all the features of a revision control system such as
Subversion [CFP04] to prevent data loss.

A software engineering project on this scale usually requires a specification
document, but since the developer and client were one and the same, it was clear that
with appropriate comments (and Python encourages self-documenting code), the code
itself was an adequate specification. (“DRY” again.)

There are three parts to the curriculorum system: the module itself, the data that
describes the specific curriculum, and the required report generators.

3.1. The curriculorum Module

All classes used by curriculorum are defined in this module, but it does not
instantiate any objects. In principle, this means that it could be used by another
department or possibly another institution, but this would be a naïve view that would not
take into account any of the requirements that led to its design. Space does not permit a
detailed view of the module, but we can include the most useful part for reimplementors:
the names of the classes.

At present, the curriculum-related classes in this module are: Campus, Course,
Degree, Department, GraduateArea, Institution, Instructor, Season, Semester,
Session, Staff (a singleton subclass of Instructor), and Timeslot. Notice that there was
no need to create a Student class, probably avoiding some privacy issues.

In addition, the module defines a set of curriculum-related exceptions: conditions
that may arise during checking or report generation that require manual correction in the
input. (In Python, these are implemented as classes.) Their names are self-explanatory:
CourseIsNotGraduate, NotQualified, NameNotUnique, and ImproperPayment.

For report generation, it was also useful to include classes to support table
generation in this module. They include Table and Column. Python's approach to
polymorphism was especially useful here. A Table associates a sequence of Columns
with an arbitrary sequence of objects. A Column has a header and a function. When a
Table is printed (i.e., converted to a string), its Column sequence is traversed for headers
on the first row and then the object sequence is traversed, one element per row. For each
such row, the element is passed to the corresponding Column's function, producing a
string that then gets put into that column on that row of the Table. This is quite robust,
even allowing for the elimination of duplicate entries in vertically-adjacent columns.

At present, most reports are generated using LaTeX [KD99], but doing the same
in HTML, RTF, simple ASCII, or any other document description language that allowed
tables would require very few modifications. The report generators are also capable of
converting the graph-related data (e.g. course prerequisites) into the “dot” format
acceptable to the graph visualization package Graphviz [GV08].

3.2 Expressing the Data

Objects are instantiated using the standard Python syntax in a collection of source
files arranged in a directory hierarchy. Empirically, we have found the hierarchy shown
in Figure 1 to be highly adaptable for this. Most of the year-to-year data is kept under the
“ay_*_*” (academic year X to X+1) hierarchy. Since much of the data is the same from
year-to-year, we create a new year by hierarchically copying the “ay_*_*” directory and
making changes, mostly to the schedule (in our case, “schedule.py”) file.

The per-term report generators (“rpt_*”) are actually symlinks to a shared
directory (not shown), and common Column definitions (e.g. “Course Name”) are also
imported from a common module. Most of the per-institution data is kept under the
“mySchool” hierarchy.

3.2. Report Generation

The basic operation of curriculorum is this: Whenever we need to generate a

report, we simply interpret the Python source for the report generator. This imports the
data (actually using the Python import statement) which in turn imports the
curriculorum module. The report generator then traverses the in-memory data structures
to produce the report itself.

Doing this every time we need a report is justified, as the volume of data is not
large enough to require a persistent database (cf. Section 2.2). As stated above, loading
the data produces less than few seconds' delay on a modern desktop system.

4. Results and Future Directions

As of this writing, curriculorum produces a Course Plan which is 29 pages of
nicely laid-out and informative PDF (the result of running the standard pdflatex) together
with several other reports. Space does not permit us to show this, but the author would
be happy to email a (slightly redacted) copy to anyone interested.

Curriculorum addresses all of our current needs. It has more than made up for the
time spent for its development and maintenance in time saved during each subsequent
term, and this amortization will continue. The use of a language instead of an OODBMS
to implement it has had no adverse consequences.

Where it goes in the future will be determined by whatever new requests come up
for the information it manages. These might include:

● recommending course tracks for specific CS specializations (e.g. games,
networks, etc.)

● enrollment tracking

● additional community college transfer equivalencies

● web output (for student perusal)

Of course, another direction curriculorum might take is up to the reader: Design
and build your own version. There is no better way for a Computer Scientist to learn
their department's curriculum.

References

[AB08] ABET, http://www.abet.org, (as of March 10, 2008).

[CFP04] Collins-Sussman, B., Fitzpatrick B., and Pilato, C., Version Control with
Subversion, O'Reilly, 2004.

[GV08] Graphviz - Graph Visualization Software, http://www.graphviz.org, (as of

Figure 1: An Effective Directory Layout Strategy for curriculorum

3/10/08).

[KD99] Kopka, H. and Daly, P. W., A Guide to LaTeX (3rd. ed.), Addison-Wesley,
1999.

[PY08] Python Programming Language, http://www.python.org, (as of 3/10/08).

	Abstract
	1. Introduction
	2. Requirements
	2.1. The Traditional Requirements
	2.2. Non-Requirements
	2.3. Reports
	2.4. Checking
	2.5. Unexpected Requirements
	2.5. Evolving Requirements and Data Availability

	3. Implementation
	3.1. The curriculorum Module
	3.2 Expressing the Data
	3.2. Report Generation

	4. Results and Future Directions
	References

