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Presentation Outline

● What is a GPU?
● How can a GPU be used to do general 

purpose computations?
● How can NumPy take advantage of a 

GPU?



What Is a GPU?

● Stands for “Graphics Processing Unit”
● It is the main component on a video card
● Provides hardware acceleration for 

graphics APIs such as OpenGL and 
DirectX



GeForce 7800 GTX
8 programmable 
vertex shaders

24 programmable 
fragment shaders

16 raster units 

(non-programmable)

GeForce 7800 GTX block diagram. Source: NVIDIA



● Large capacity for floating point 
calculations

● Dedicated hardware for many graphics-
related operations (linear algebra, 
trigonometry, etc.)

● Highly parallel
● Improving more rapidly than traditional 

CPUs
● Programmable

Strengths of a GPU



Weaknesses of a GPU

● Only single-precision floating point values 
are supported.

● Data must be copied to the GPU's memory 
before calculations can be done.

● Programming is conceptually more difficult 
than on a traditional CPU.



GPU vs. CPU

Source: SIGGRAPH 2005 GPGPU Course



GPU Programmability

● How can a GPU be used to do general 
purpose computations?

● Newer GPUs can directly execute programs 
written in high-level languages (Cg, GLSL, 
HLSL) or in assembler.

● Programs are called shaders and will seem 
familiar to programmers who have used C 
and/or assembler.



How it works

● GPUs execute a program once for each 
pixel that is drawn to the screen.

● The coordinates of the pixel being drawn 
index an element of an array.

● By rendering a rectangle that fills the entire 
screen, the GPU can be made to execute a 
program once for each element in an array.



Data Types

● Most GPUs support 1- 2- 3- or 4-vectors of 
32-bit floating point values.

● Some operators act in parallel on all elements 
of the vector, others act on single elements.

● Data is passed to the GPU in the form of a 
texture, which is essentially an array.



High-Level Code for Addition

float4 main(float2 p : TEXCOORD0,
            uniform samplerRECT arg1,
            uniform samplerRECT arg2) : COLOR
{

return texRECT(arg1, p) + texRECT(arg2, p);
}

uniform sampler2DRect arg1;
uniform sampler2DRect arg2;
void main(void)
{

vec2 p = gl_TexCoord[0].xy;
gl_FragColor = 
    texture2DRect(arg1, p) + texture2DRect(arg2, p);

}

Cg:

GLSL:



Assembler for Addition

PARAM c[1] = { program.local[0] };
TEMP R0;
TEMP R1;
TEX R1, fragment.texcoord[0], texture[1], RECT;
TEX R0, fragment.texcoord[0], texture[0], RECT;
ADD result.color, R0, R1;
END

● The two examples from the previous slide 
both produce the following assembler code.

arbfp1:



GpuPy

● GpuPy extends NumPy so that it can take 
advantage of a GPU. 

● Many of the operations that NumPy 
provides can be performed efficiently on a 
GPU.



How it works

● GpuPy overrides NumPy's default 
implementations of Float32 operations with 
GPU-based implementations.

● GpuPy can be transparent, so if a GPU is 
present on the system where the script is 
being run, it will simply run faster.

● This means that existing scripts can take 
advantage of a GPU without any changes.



Drawbacks

● Currently, the GPU-based implementations 
only support 32-bit floating point values, so 
only Float32 and Complex64 can be 
accelerated.

● Simple operations aren't any faster than 
software (yet).



Performance Results 1

● Some operations are never faster on a 
GPU.



Performance Results 2

● Some operations are only faster on a GPU 
when the array size is large enough.



Performance Results 3

● Some operations are much faster on a 
GPU.



Cross Correlation

● Implementing NumPy's correlate function 
on a GPU.



Reductions

● Reductions can be performed in parallel on 
the GPU.

● Reduction Requires O(lg N) steps.
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More Complex Operations

● Convolution can be done on a GPU, and is 
a good choice because of the large number 
of multiplies per element copied to the 
GPU.

● Sorting networks.
● FFTs can also be performed on the GPU. 

http://gamma.cs.unc.edu/GPUFFTW



Future Work: High-Level Code 
for Edge Detection Filter

float main(float2 p : TEXCOORD0,
           uniform samplerRECT arg1) : COLOR
{

float v1 = texRECT(arg1, p + float2(-1, -1)).r * -1;
float v2 = texRECT(arg1, p + float2(-1,  0)).r * -2;
float v3 = texRECT(arg1, p + float2(-1,  1)).r * -1;
float v4 = texRECT(arg1, p + float2( 0, -1)).r *  0;
float v5 = texRECT(arg1, p + float2( 0,  0)).r *  0;
float v6 = texRECT(arg1, p + float2( 0,  1)).r *  0;
float v7 = texRECT(arg1, p + float2( 1, -1)).r *  1;
float v8 = texRECT(arg1, p + float2( 1,  0)).r *  2;
float v9 = texRECT(arg1, p + float2( 1,  1)).r *  1;

return v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9;
}

Cg:



Future Work: Assembler for 
Edge Detection Filter

PARAM c[2] = { { 1, 0, 2, -1 }, { -2 } };
TEMP R0;
TEMP R1;
ADD R0.xy, fragment.texcoord[0], c[0].w;
ADD R0.zw, fragment.texcoord[0].xyxy, c[0].xywy;
TEX R1.x, R0.zwzw, texture[0], RECT;
TEX R0.x, R0, texture[0], RECT;
MAD R0.y, R1.x, c[1].x, -R0.x;
ADD R1.xy, fragment.texcoord[0], c[0].wxzw;
TEX R0.x, R1, texture[0], RECT;
ADD R0.zw, fragment.texcoord[0].xyxy, c[0].xyxw;
TEX R1.x, R0.zwzw, texture[0], RECT;
ADD R0.x, R0.y, -R0;
ADD R0.y, R0.x, R1.x;
ADD R1.xy, fragment.texcoord[0], c[0].x;
TEX R0.x, R1, texture[0], RECT;
ADD R0.zw, fragment.texcoord[0].xyxy, c[0].xyxy;
TEX R1.x, R0.zwzw, texture[0], RECT;
MAD R0.y, R1.x, c[0].z, R0;
ADD result.color.x, R0.y, R0;
END   

arbfp1:



Future Work: Minimize Copies

● Moving data between CPU and GPU is 
bottleneck.

● Avoiding the transfer of intermediate values 
can improve performance considerably. 

● Optimize texture usage.
● Combine complex operations into a single 

shader.
● Be aware how the GPU and driver are 

managing memory.



Future Work: Lazy Evaluation

● Postpone calculations until result is actually 
needed.

● Avoid copying data between GPU and CPU 
whenever possible.

● Saves expression and only evaluates it 
when needed.



Future Work: Miscellaneous

● Auto-configuration: Dynamically decide 
whether it is faster to perform the operation 
in software or using the GPU (or a 
combination of both).

● Double-precision emulation: Use the GPU's 
single-precision hardware to provide 
double or greater precision floating point 
values. 
http://hal.ccsd.cnrs.fr/ccsd-00021443



email:
eitzenb@eecs.wsu.edu
bobl@tricity.wsu.edu

on the web:
http://eecs.wsu.edu/~eitzenb/gpupy
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