
GpuPy: Accelerating NumPy 
With a GPU

Washington State University
School of Electrical Engineering and Computer 

Science

Benjamin Eitzen - eitzenb@eecs.wsu.edu
Robert R. Lewis - bobl@tricity.wsu.edu





Presentation Outline

● What is a GPU?
● How can a GPU be used to do general 

purpose computations?
● How can NumPy take advantage of a 

GPU?



What Is a GPU?

● Stands for “Graphics Processing Unit”
● It is the main component on a video card
● Provides hardware acceleration for 

graphics APIs such as OpenGL and 
DirectX



GeForce 7800 GTX
8 programmable 
vertex shaders

24 programmable 
fragment shaders

16 raster units 

(non-programmable)

GeForce 7800 GTX block diagram. Source: NVIDIA



● Large capacity for floating point 
calculations

● Dedicated hardware for many graphics-
related operations (linear algebra, 
trigonometry, etc.)

● Highly parallel
● Improving more rapidly than traditional 

CPUs
● Programmable

Strengths of a GPU



Weaknesses of a GPU

● Only single-precision floating point values 
are supported.

● Data must be copied to the GPU's memory 
before calculations can be done.

● Programming is conceptually more difficult 
than on a traditional CPU.



GPU vs. CPU

Source: SIGGRAPH 2005 GPGPU Course



GPU Programmability

● How can a GPU be used to do general 
purpose computations?

● Newer GPUs can directly execute programs 
written in high-level languages (Cg, GLSL, 
HLSL) or in assembler.

● Programs are called shaders and will seem 
familiar to programmers who have used C 
and/or assembler.



How it works

● GPUs execute a program once for each 
pixel that is drawn to the screen.

● The coordinates of the pixel being drawn 
index an element of an array.

● By rendering a rectangle that fills the entire 
screen, the GPU can be made to execute a 
program once for each element in an array.



Data Types

● Most GPUs support 1- 2- 3- or 4-vectors of 
32-bit floating point values.

● Some operators act in parallel on all elements 
of the vector, others act on single elements.

● Data is passed to the GPU in the form of a 
texture, which is essentially an array.



High-Level Code for Addition

float4 main(float2 p : TEXCOORD0,
            uniform samplerRECT arg1,
            uniform samplerRECT arg2) : COLOR
{

return texRECT(arg1, p) + texRECT(arg2, p);
}

uniform sampler2DRect arg1;
uniform sampler2DRect arg2;
void main(void)
{

vec2 p = gl_TexCoord[0].xy;
gl_FragColor = 
    texture2DRect(arg1, p) + texture2DRect(arg2, p);

}

Cg:

GLSL:



Assembler for Addition

PARAM c[1] = { program.local[0] };
TEMP R0;
TEMP R1;
TEX R1, fragment.texcoord[0], texture[1], RECT;
TEX R0, fragment.texcoord[0], texture[0], RECT;
ADD result.color, R0, R1;
END

● The two examples from the previous slide 
both produce the following assembler code.

arbfp1:



GpuPy

● GpuPy extends NumPy so that it can take 
advantage of a GPU. 

● Many of the operations that NumPy 
provides can be performed efficiently on a 
GPU.



How it works

● GpuPy overrides NumPy's default 
implementations of Float32 operations with 
GPU-based implementations.

● GpuPy can be transparent, so if a GPU is 
present on the system where the script is 
being run, it will simply run faster.

● This means that existing scripts can take 
advantage of a GPU without any changes.



Drawbacks

● Currently, the GPU-based implementations 
only support 32-bit floating point values, so 
only Float32 and Complex64 can be 
accelerated.

● Simple operations aren't any faster than 
software (yet).



Performance Results 1

● Some operations are never faster on a 
GPU.



Performance Results 2

● Some operations are only faster on a GPU 
when the array size is large enough.



Performance Results 3

● Some operations are much faster on a 
GPU.



Cross Correlation

● Implementing NumPy's correlate function 
on a GPU.



Reductions

● Reductions can be performed in parallel on 
the GPU.

● Reduction Requires O(lg N) steps.

3 9

2 4

7 1

6 5

0 5

1 7

3 8

2 5

9 7

7 8
9

Example: Finding the maximum value.

Step 
1

Step 
2



More Complex Operations

● Convolution can be done on a GPU, and is 
a good choice because of the large number 
of multiplies per element copied to the 
GPU.

● Sorting networks.
● FFTs can also be performed on the GPU. 

http://gamma.cs.unc.edu/GPUFFTW



Future Work: High-Level Code 
for Edge Detection Filter

float main(float2 p : TEXCOORD0,
           uniform samplerRECT arg1) : COLOR
{

float v1 = texRECT(arg1, p + float2(-1, -1)).r * -1;
float v2 = texRECT(arg1, p + float2(-1,  0)).r * -2;
float v3 = texRECT(arg1, p + float2(-1,  1)).r * -1;
float v4 = texRECT(arg1, p + float2( 0, -1)).r *  0;
float v5 = texRECT(arg1, p + float2( 0,  0)).r *  0;
float v6 = texRECT(arg1, p + float2( 0,  1)).r *  0;
float v7 = texRECT(arg1, p + float2( 1, -1)).r *  1;
float v8 = texRECT(arg1, p + float2( 1,  0)).r *  2;
float v9 = texRECT(arg1, p + float2( 1,  1)).r *  1;

return v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9;
}

Cg:



Future Work: Assembler for 
Edge Detection Filter

PARAM c[2] = { { 1, 0, 2, -1 }, { -2 } };
TEMP R0;
TEMP R1;
ADD R0.xy, fragment.texcoord[0], c[0].w;
ADD R0.zw, fragment.texcoord[0].xyxy, c[0].xywy;
TEX R1.x, R0.zwzw, texture[0], RECT;
TEX R0.x, R0, texture[0], RECT;
MAD R0.y, R1.x, c[1].x, -R0.x;
ADD R1.xy, fragment.texcoord[0], c[0].wxzw;
TEX R0.x, R1, texture[0], RECT;
ADD R0.zw, fragment.texcoord[0].xyxy, c[0].xyxw;
TEX R1.x, R0.zwzw, texture[0], RECT;
ADD R0.x, R0.y, -R0;
ADD R0.y, R0.x, R1.x;
ADD R1.xy, fragment.texcoord[0], c[0].x;
TEX R0.x, R1, texture[0], RECT;
ADD R0.zw, fragment.texcoord[0].xyxy, c[0].xyxy;
TEX R1.x, R0.zwzw, texture[0], RECT;
MAD R0.y, R1.x, c[0].z, R0;
ADD result.color.x, R0.y, R0;
END   

arbfp1:



Future Work: Minimize Copies

● Moving data between CPU and GPU is 
bottleneck.

● Avoiding the transfer of intermediate values 
can improve performance considerably. 

● Optimize texture usage.
● Combine complex operations into a single 

shader.
● Be aware how the GPU and driver are 

managing memory.



Future Work: Lazy Evaluation

● Postpone calculations until result is actually 
needed.

● Avoid copying data between GPU and CPU 
whenever possible.

● Saves expression and only evaluates it 
when needed.



Future Work: Miscellaneous

● Auto-configuration: Dynamically decide 
whether it is faster to perform the operation 
in software or using the GPU (or a 
combination of both).

● Double-precision emulation: Use the GPU's 
single-precision hardware to provide 
double or greater precision floating point 
values. 
http://hal.ccsd.cnrs.fr/ccsd-00021443



email:
eitzenb@eecs.wsu.edu
bobl@tricity.wsu.edu

on the web:
http://eecs.wsu.edu/~eitzenb/gpupy


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

